6 research outputs found

    Mercury analysis in hair: Comparability and quality assessment within the transnational COPHES/DEMOCOPHES project

    No full text
    Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical procedures has often limited the comparison of data at national and international level. The European-funded projects COPHES and DEMOCOPHES developed and tested a harmonized European approach to Human Biomonitoring in response to the European Environment and Health Action Plan. Herein we describe the quality assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0.20-0.71 and 0.80-1.63) per exercise. The results revealed relative standard deviations of 7.87-13.55% and 4.04-11.31% for the low and high mercury concentration ranges, respectively. A total of 16 out of 18 participating laboratories the QAP requirements and were allowed to analyze samples from the DEMOCOPHES pilot study. Web conferences after each ICI/EQUAS revealed this to be a new and effective tool for improving analytical performance and increasing capacity building. The procedure developed and tested in COPHES/DEMOCOPHES would be optimal for application on a global scale as regards implementation of the Minamata Convention on Mercury.publisher: Elsevier articletitle: Mercury analysis in hair: Comparability and quality assessment within the transnational COPHES/DEMOCOPHES project journaltitle: Environmental Research articlelink: http://dx.doi.org/10.1016/j.envres.2014.11.014 content_type: article copyright: Copyright © 2014 Elsevier Inc. All rights reserved.status: publishe

    Mercury analysis in hair:Comparability and quality assessment within the transnational COPHES/DEMOCOPHES project

    No full text
    Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical procedures has often limited the comparison of data at national and international level. The European-funded projects COPHES and DEMOCOPHES developed and tested a harmonized European approach to Human Biomonitoring in response to the European Environment and Health Action Plan. Herein we describe the quality assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0.20-0.71 and 0.80-1.63) per exercise. The results revealed relative standard deviations of 7.87-13.55% and 4.04-11.31% for the low and high mercury concentration ranges, respectively. A total of 16 out of 18 participating laboratories the QAP requirements and were allowed to analyze samples from the DEMOCOPHES pilot study. Web conferences after each ICI/EQUAS revealed this to be a new and effective tool for improving analytical performance and increasing capacity building. The procedure developed and tested in COPHES/DEMOCOPHES would be optimal for application on a global scale as regards implementation of the Minamata Convention on Mercury

    The European COPHES/DEMOCOPHES project: Towards transnational comparability and reliability of human biomonitoring results

    No full text
    COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in Europe". Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability. Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.publisher: Elsevier articletitle: The European COPHES/DEMOCOPHES project: Towards transnational comparability and reliability of human biomonitoring results journaltitle: International Journal of Hygiene and Environmental Health articlelink: http://dx.doi.org/10.1016/j.ijheh.2013.12.002 content_type: article copyright: Copyright © 2013 Elsevier GmbH. Published by Elsevier GmbH All rights reserved.status: publishe

    The European COPHES/DEMOCOPHES project : towards transnational comparability and reliability of human biomonitoring results

    No full text
    © 2013 Elsevier GmbH. All rights reserved.COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to “develop a coherent approach on human biomonitoring (HBM) in Europe”. Within this twin-project it was targeted to collect specimens from 120 mother–child-pairs in each of the 17 participating Europeancountries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine,cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability.Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolitesand 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations(low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHESproject for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.COPHES is funded under the 7th frameworkprogram of the EU (DG Research – No. 244237). DEMO-COPHES is funded 50% by Life+ 2009 (DG Environment – Life09ENV/BE000410) and the corresponding authorities in the participating countries
    corecore