193 research outputs found

    An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: Rewiring GFP

    Get PDF
    The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein environment optimized for the neutral species (the I* state). Reorientation or replacement of E222, as occurs in the S65T and E222Q GFP mutants, disables the ESPT reaction and results in loss of green emission following excitation of the neutral chromophore. Previously, it has been shown that the introduction of a second mutation (H148D) into S65T GFP allows the recovery of green emission, implying that ESPT is again possible. A similar recovery of green fluorescence is also observed for the E222Q/H148D mutant, suggesting that D148 is the proton acceptor for the ESPT reaction in both double mutants. The mechanism of fluorescence emission following excitation of the neutral chromophore in S65T/H148D and E222Q/H148D has been explored through the use of steady state and ultrafast time-resolved fluorescence and vibrational spectroscopy. The data are contrasted with those of the single mutant S65T GFP. Time-resolved fluorescence studies indicate very rapid (<1 ps) formation of I* in the double mutants, followed by vibrational cooling on the picosecond time scale. The time-resolved IR difference spectra are markedly different to those of wtGFP or its anionic mutants. In particular, no spectral signatures are apparent in the picosecond IR difference spectra that would correspond to alteration in the ionization state of D148, leading to the proposal that a low-barrier hydrogen bond (LBHB) is present between the phenol hydroxyl of the chromophore and the side chain of D148, with different potential energy surfaces for the ground and excited states. This model is consistent with recent high-resolution structural data in which the distance between the donor and acceptor oxygen atoms is =2.4 Ă…. Importantly, these studies indicate that the hydrogen-bond network in wtGFP can be replaced by a single residue, an observation which, when fully explored, will add to our understanding of the various requirements for proton-transfer reactions within proteins

    “I Do Not Like Being Me”: the Impact of Self-hate on Increased Risky Sexual Behavior in Sexual Minority People

    Get PDF
    Background: Increased risky sexual behaviors (RSB) in sexual minority people relative to heterosexual individuals are well documented. However, the role of trans-diagnostic factors that are not sexual orientation-specific, such as self-criticism, in predicting RSB was understudied. The present study aimed to test participants’ gender and sexual orientation as moderators between self-criticism and RSB. Methods: Data were collected during 2019. The total sample included 986 sexual minority people (Nwomen = 51%) and 853 heterosexual people (Nwomen = 46%), ranging from 18 to 35&nbsp;years of age. Self-criticism dimensions (self-hate, self-inadequacy, self-reassurance), types of positive affect (relaxed, safe/content, and activated affect), and RSB were assessed. Bivariate, multivariate analyses, and moderated regression analyses were conducted. Results: Sexual minority participants showed higher levels of RSB, self-hate, and self-inadequacy than heterosexual people. Only in sexual minority men, RSB correlated positively with self-hate and negatively with safe/content positive affect. Moderated regressions showed that only for sexual minority participants, higher RSB were predicted by higher levels of self-hate. At the same time, this association was not significant for heterosexual people controlling the effects of age, presence of a stable relationship, other self-criticism dimensions, and activation safe/content affect scale. The two-way interaction between sexual orientation and gender was significant, showing that regardless of self-hate, the strength of the association between sexual orientation and RSB is stronger for sexual minority men than sexual minority women and heterosexual participants. Conclusions: Findings highlight the distinctive role of self-hate in the occurrence of RSB in sexual minority people and support the usefulness of developing a compassion-focused intervention to target self-hate in sexual minority people

    Recoil Polarization Measurements for Neutral Pion Electroproduction at Q^2=1 (GeV/c)^2 Near the Delta Resonance

    Get PDF
    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q^2 = 1.0 (GeV/c)^2 in 10 bins of W across the Delta resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near 1.232 GeV, but variations among models is large for response functions governed by imaginary parts and for both increases rapidly with W. We performed a nearly model-independent multipole analysis that adjusts complex multipoles with high partial waves constrained by baseline models. Parabolic fits to the W dependence of the multipole analysis around the Delta mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that are distinctly larger than those from Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe. Finally, using a unitary isobar model (UIM), we find that excitation of the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01) GeV^(-1/2) at Q^2=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but the UIM does not reproduce the imaginary parts of 0+ multipoles well.Comment: 60 pages, 54 figure

    Recoil Polarization for Delta Excitation in Pion Electroproduction

    Get PDF
    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q^2=1.0 (GeV/c)^2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.Comment: 5 pages, 2 figures, for PR

    Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres

    Full text link
    We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises when the two nanoparticles are as close as possible to contact, as in situ controlled and measured using the tip of an atomic force microscope. The excitation wavelength dependence of the second-harmonic signal supports a coupled plasmon resonance origin with radiation from the dimer gap. This nanometer-size light source might be used for high-resolution near-field optical microscopy.Comment: 6 pages, 5 figure

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Inhibitory Control Predicts Grammatical Ability

    Get PDF
    We present evidence that individual variation in grammatical ability can be predicted by individual variation in inhibitory control. We tested 81 5-year-olds using two classic tests from linguistics and psychology (Past Tense and the Stroop). Inhibitory control was a better predicator of grammatical ability than either vocabulary or age. Our explanation is that giving the correct response in both tests requires using a common cognitive capacity to inhibit unwanted competition. The implications are that understanding the developmental trajectory of language acquisition can benefit from integrating the developmental trajectory of non-linguistic faculties, such as executive control

    Mutagenesis Objective Search and Selection Tool (MOSST): an algorithm to predict structure-function related mutations in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs) or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships.</p> <p>Results</p> <p>A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein's primary sequence into a group of functionally non-disruptive amino acids and a second group of functionally deleterious amino acids.</p> <p>Conclusions</p> <p>With this approach, not only conserved amino acid positions in a protein family can be labeled as functionally relevant, but also non-conserved amino acid positions can be identified to have a physicochemically meaningful functional effect. These results become a discriminative tool in the selection and elaboration of rational mutagenesis strategies for the protein. They can also be used to predict if a given nsSNP, identified, for instance, in a genomic-scale analysis, can have a functional implication for a particular protein and which nsSNPs are most likely to be functionally silent for a protein. This analytical tool could be used to rapidly and automatically discard any irrelevant nsSNP and guide the research focus toward functionally significant mutations. Based on preliminary results and applications, this technique shows promising performance as a valuable bioinformatics tool to aid in the development of new protein variants and in the understanding of function-structure relationships in proteins.</p
    • …
    corecore