118 research outputs found

    Phospholipid‐flipping activity of P4‐ATPase drives membrane curvature

    Get PDF
    リン脂質の移動によって細胞膜が変形するメカニズムを解明 --ウイルス・細菌の細胞への侵入を制御の可能性--. 京都大学プレスリリース. 2018-03-30.P4-ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4-ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid-flipping activity of P4-ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine-flippase activity at the PM due to expression of ATP10A, a member of the P4-ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM. This is the important evidence that changes in the transbilayer lipid composition induced by P4-ATPases can deform biological membranes

    Correlation of Heat Shock Protein Expression to Gender Difference in Development of Stress-Induced Gastric Mucosal Injury in Rats

    Get PDF
    Recent studies have indicated that heat shock proteins (HSPs), which function as molecular chaperones, play important roles in cellular responses to stress-related events. However, the gender difference in the expression of HSP in the gastric mucosa remains unclear. In order to understand the mechanism of gender difference in the prevalence or severity of gastric mucosal lesions, the expression level of HSP and the correlation of estrogen to HSP induction in the gastric mucosa were evaluated in this study. The basal expression levels of HSP60 and HSP90 in the gastric mucosa were significantly higher in females than those in males. The gastric ulcer index was significantly higher in male rats compared to female rats observed after 12 h water immersion stress exposure. At this time point, the expression levels of HSP60 and HSP90 in the gastric mucosa were significantly higher in females than those in males. An estrogen-treatment significantly induced the expression of HSP60, HSP70 and HSP90 in the gastric mucosa. Inversely, an ovariectomy dramatically reduced the expression of HSP60, HSP70 and HSP90 in the gastric mucosa. Our results suggested that estrogen might play an important role in gastric mucosal protection with the induction of gastric mucosal HSPs

    SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells

    Get PDF
    In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs

    Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit

    Get PDF
    The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory

    How Co-translational Folding of Multi-domain Protein Is Affected by Elongation Schedule: Molecular Simulations

    Get PDF
    Co-translational folding (CTF) facilitates correct folding in vivo, but its precise mechanism remains elusive. For the CTF of a three-domain protein SufI, it was reported that the translational attenuation is obligatory to acquire the functional state. Here, to gain structural insights on the underlying mechanisms, we performed comparative molecular simulations of SufI that mimic CTF as well as refolding schemes. A CTF scheme that relied on a codon-based prediction of translational rates exhibited folding probability markedly higher than that by the refolding scheme. When the CTF schedule is speeded up, the success rate dropped. These agree with experiments. Structural investigation clarified that misfolding of the middle domain was much more frequent in the refolding scheme than that in the codon-based CTF scheme. The middle domain is less stable and can fold via interactions with the folded N-terminal domain. Folding pathway networks showed the codon-based CTF gives narrower pathways to the native state than the refolding scheme

    Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme

    Get PDF
    The gene (icl) encoding cold-adapted isocitrate lyase (ICL) of a psychrophilic bacterium, Colwellia psychrerythraea, was cloned and sequenced. Open reading frame of the gene was 1,587 bp in length and corresponded to a polypeptide composed of 528 amino acids. The deduced amino acid sequence showed high homology with that of cold-adapted ICL from other psychrophilic bacterium, C. maris (88% identity), but the sequential homology with that of the Escherichia coli ICL was low (28% identity). Primer extension analysis revealed that transcriptional start site for the C. psychrerythraea icl gene was guanine, located at 87 bases upstream of translational initiation codon. The expression of this gene in the cells of an E. coli mutant defective in ICL was induced by not only low temperature but also acetate. However, cis-acting elements for cold-inducible expression known in the several other bacterial genes were absent in the promoter region of the C. psychrerythraea icl gene. The substitution of Ala214 for Ser in the C. psychrerythraea ICL introduced by point mutation resulted in the increased thermostability and lowering of the specific activity at low temperature, indicating that Ala214 is important for psychrophilic properties of this enzyme

    The cold-inducible icl gene encoding thermolabile isocitrate lyase of a psychrophilic bacterium, Colwellia marisa

    Get PDF
    The gene encoding isocitrate lyase (ICL; EC 4.1.3.1) of a psychrophilic bacterium, Colwellia maris, was cloned and sequenced. The ORF of the gene (icl) was 1584 bp long, and the predicted gene product consisted of 528 aa (molecular mass 58150 Da) and showed low homology with the corresponding enzymes from other organisms. The analyses of amino acid content and primary structure of the C. maris ICL suggested that it possessed many features of a cold-adapted enzyme. Primer extension and Northern blot analyses revealed that two species of the icl mRNAs with differential lengths of 5'-untranslated regions (TS1 and TS2) were present, of which the 5' end (TS1 and TS2 sites) were G and A, located at 130 and 39 bases upstream of the translation start codon, respectively. The levels of TS1 and TS2 mRNAs were increased by both acetate and low temperature. The induction of icl expression by low temperature took place in the C. maris cells grown on succinate as the carbon source but not acetate. Furthermore, a similar manner of inductions was also found in the levels of the translation and the enzyme activity in cell-free extract. These results suggest that the icl gene, encoding thermolabile isocitrate lyase, of C. maris is important for acetate utilization and cold adaptation
    corecore