5 research outputs found

    A Summary of Methods for Fire Tests of Roof Coverings

    Get PDF
    AbstractThe testing method about the fire performance of roof covering and materials has not been put into operation in China. This article focuses on two main international testing about fire performance of roof covering and materials, comparing the difference between the two test methods

    High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning

    No full text
    We show that thermal treatment of small Au seeds results in extensive twinning and a subsequent drastic improvement in the yield (>85%) of formation of penta­twinned nanoparticles (NPs), with preselected morphology (nanorods, bipyramids, and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained NPs, which in the case of nanorods avoids the need for additives such as Ag<sup>+</sup> ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final NPs. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. Together, these results represent a paradigm shift in anisotropic gold NP synthesis

    Near-Infrared-Emitting CuInS<sub>2</sub>/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth

    No full text
    Synthesis protocols for anisotropic CuInX<sub>2</sub> (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX<sub>2</sub> lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS<sub>2</sub>/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS<sub>2</sub> NCs used as seeds are obtained by topotactic partial Cu<sup>+</sup> for In<sup>3+</sup> cation exchange in template Cu<sub>2–<i>x</i></sub>S NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS<sub>2</sub> seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS<sub>2</sub> seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals

    Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films

    No full text
    Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control and sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticle ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multitechnique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics, and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition

    Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films

    Get PDF
    Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control and sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticle ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multitechnique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics, and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition
    corecore