48 research outputs found

    The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety

    Full text link
    BACKGROUND: Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. METHODS: We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. RESULTS: We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. LIMITATIONS: Shape alterations are not specific to hippocampal subfields. CONCLUSION: Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection

    Adult Female Fragile X Premutation Carriers Exhibit Age- and CGG Repeat Length-Related Impairments on an Attentionally Based Enumeration Task

    Get PDF
    The high frequency of the fragile X premutation in the general population and its emerging neurocognitive implications highlight the need to investigate the effects of the premutation on lifespan cognitive development. Until recently, cognitive function in fragile X premutation carriers (fXPCs) was presumed to be unaffected by the mutation. Although as a group fXPCs did not differ from healthy controls (HCs), we show that young adult female fXPCs show subtle age- and significant fragile X mental retardation 1 (FMR1) gene mutation-modulated cognitive function as tested by a basic numerical enumeration task. These results indicate that older women with the premutation and fXPCs with greater CGG repeat lengths were at higher risk for difficulties in the deployment of volitional attention required to count 5–8 items, but spared performance when spatial shifts of attention were minimized to subitize a few (1–3). Results from the current study add to a growing body of evidence that suggests the premutation allele is associated with a subtle phenotype and implies that the cognitive demands necessary for counting are less effectively deployed in female fXPCs compared to HCs

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    Source‐based morphometry reveals structural brain pattern abnormalities in 22q11.2 deletion syndrome

    Get PDF
    22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1‐weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source‐based morphometry (SBM) pipeline (SS‐Detect) to generate structural brain patterns (SBPs) that capture co‐varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV‐SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel‐based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism

    Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size

    Get PDF
    The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen’s d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = −1.01/−1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia

    Reformacija kao proces uspostavljanja i obnavljanja odnosa s Bogom

    Get PDF
    22q11.2 deletion syndrome (22q11DS)—a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22—is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6–52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen’s d’s ranging from −0.9 to −1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers

    TRACULA tract profiles for each of the 18 identified fiber tracts in old (age > 13.0 yrs.) and young (age <= 13.0 yrs.) participants

    No full text
    <pre>Shown are the TRACULA tract profiles for each of the 18 identified fiber tracts in old (age > 13.0 yrs.) and young (age <= 13.0 yrs.) participants. Plotted is FA (±SE) along the core of the fiber tract (y-axis) at equidistant points (x-axis). Shaded regions represent locations in which p < 0.05, FDR-corrected.</pre

    TRACULA tract profiles for each of the 18 identified fiber tracts in girls and boys

    No full text
    <pre>Shown are the TRACULA tract profiles for each of the 18 identified fiber tracts in girls and boys. Plotted are FA, RD, AD, and MD (± SE) along the core of the fiber tract (y-axis) at equidistant points (x-axis). Shaded regions represent locations in which p < 0.05, FDR-corrected.</pre
    corecore