51 research outputs found

    Supersaturated state of diazepam injection following dilution with infusion fluid

    Get PDF
    BackgroundSignificant precipitation produced by the dilution of diazepam (DZP) injection with an infusion fluid is a great concern for the clinical practice. In this study, the precipitation behavior under different conditions was investigated.MethodFor the sample preparation, DZP injections (Horizon injection and Cercine injection) were diluted with various infusion fluids (Saline, 5% glucose infusion fluid and Soldem 3A) at designated dilution ratios ranging from 1× to 40× (5 mg/mL to 0.125 mg/mL). In addition, to measure the solubility of DZP in the samples, the saturated solutions of DZP were prepared. The DZP concentrations in the samples were measured by high-performance liquid chromatography (HPLC). This study also investigated the precipitate using various analytical methods: infrared microscopy, 1H-NMR, differential scanning calorimetry, and powder X-ray deflection.ResultsFirst, the compatibility of injection with infusion fluids was investigated. Significant precipitation occurred at dilution ratios ranging from 2× to 20×. No significant effects of formulations and infusion fluids on the compatibility were observed. The solubility of DZP was then further investigated. The concentration of DZP dissolved in the admixtures was higher than the solubility. This indicated that DZP existed in a supersaturated state in the infusion fluid admixtures. In the next phase of this study, the precipitate was investigated using various analytical methods. Results showed that the precipitate in infusion fluid admixtures was mostly composed of DZP, but also contained small amounts of the ingredients of DZP injection, such as benzoic acid and benzyl alcohol.ConclusionsThis study clarified details of the precipitation occurring after dilution of DZP injection with infusion fluids. It is worth noting that DZP in an infusion admixture existed in a supersaturated state. These findings offer important insight into the clinical practice of DZP injection

    Чисельне моделювання фазових переходів у просторово-розподілених стохастичних системах

    Get PDF
    У рамках комп’ютерного експерименту у роботі вивчалася можливість реалізації фазового переходу типу порушення симетрії у просторово-розподіленій синергетичній системі за рахунок дії скорельованих у часі шумів. У якості базової моделі була використана система Лоренца із двома шумами та просторовою (дифузійною) складовою у рівнянні на параметр порядку. Побудована модель добре описує ряд процесів, наприклад, самоорганізацію дефектної структури під впливом скорельованих внутрішнього та зовнішнього шумів

    EpEX, the soluble extracellular domain of EpCAM, resists cetuximab treatment of EGFR-high head and neck squamous cell carcinoma

    Get PDF
    Objectives: Cetuximab (Cmab) is a molecularly targeted monoclonal antibody drug for head and neck squamous cell carcinoma (HNSC), although cetuximab resistance is a serious challenge. Epithelial cell adhesion molecule (EpCAM) is an established marker for many epithelial tumors, while the soluble EpCAM extracellular domain (EpEX) functions as a ligand for epidermal growth factor receptor (EGFR). We investigated the expression of EpCAM in HNSC, its involvement in Cmab action, and the mechanism by which soluble EpEX activated EGFR and played key roles in Cmab resistance. Materials and methods: We first examined EPCAM expression in HNSCs and its clinical significance by searching gene expression array databases. We then examined the effects of soluble EpEX and Cmab on intracellular signaling and Cmab efficacy in HNSC cell lines (HSC-3 and SAS). Results: EPCAM expression was found to be enhanced in HNSC tumor tissues compared to normal tissues, and the enhancement was correlated with stage progression and prognosis. Soluble EpEX activated the EGFR-ERK signaling pathway and nuclear translocation of EpCAM intracellular domains (EpICDs) in HNSC cells. EpEX resisted the antitumor effect of Cmab in an EGFR expression-dependent manner. Conclusion: Soluble EpEX activates EGFR to increase Cmab resistance in HNSC cells. The EpEX-activated Cmab resistance in HNSC is potentially mediated by the EGFR-ERK signaling pathway and the EpCAM cleavage-induced nuclear translocation of EpICD. High expression and cleavage of EpCAM are potential biomarkers for predicting the clinical efficacy and resistance to Cmab

    La fundación de la Madrasa al-Adāb por la Asociación de ulemas musulmanes argelinos en la ciudad de Hennaya (Tremecén) en 1950

    Get PDF
    A biphenyl-fused BODIPY was synthesized through a facile oxidative cyclization of peripheral aryl-substituents at the β-position of the BODIPY unit. The extended π-system of the fused BODIPY induces near-infrared (NIR) absorption and strong π–π interactions in the solid state. These features are beneficial for the application of the dye as a functional material. The biphenyl-fused BODIPY dye was demonstrated to exhibit photocurrent conversion ability on the basis of its <i>n</i>-type semiconducting property

    LRRK2 Phosphorylates Tubulin-Associated Tau but Not the Free Molecule: LRRK2-Mediated Regulation of the Tau-Tubulin Association and Neurite Outgrowth

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2), a large protein kinase containing multi-functional domains, has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). In the present study, we demonstrated for the first time that (i) LRRK2 interacts with tau in a tubulin-dependent manner; (ii) LRRK2 directly phosphorylates tubulin-associated tau, but not free tau; (iii) LRRK2 phosphorylates tau at Thr181 as one of the target sites; and (iv) The PD-associated LRRK2 mutations, G2019S and I2020T, elevated the degree of tau-phosphorylation. These results provide direct proof that tau is a physiological substrate for LRRK2. Furthermore, we revealed that LRRK2-mediated phosphorylation of tau reduces its tubulin-binding ability. Our results suggest that LRRK2 plays an important role as a physiological regulator for phosphorylation-mediated dissociation of tau from microtubules, which is an integral aspect of microtubule dynamics essential for neurite outgrowth and axonal transport

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore