1,331 research outputs found

    Supersolid of Hardcore Bosons on the Face Centered Cubic Lattice

    Full text link
    We investigate a supersolid state in hardcore boson models on the face-centered-cubic (FCC) lattice. The supersolid state is characterized by a coexistence of crystalline order and superfluidity. Using a quantum Monte Carlo method based on the directed-loop algorithm, we calculate static structure factors and superfluid density at finite temperature, from which we obtain the phase diagram. The supersolid phase exists at intermediate fillings between a three-quarter-filled solid phase and a half-filled solid phase. We also discuss the mechanism of the supersolid state on the FCC lattice.Comment: 5pages, 6figure

    Ground-State Phase Diagram of the Two-Dimensional Extended Bose-Hubbard Model

    Full text link
    We investigate the ground-state phase diagram of the soft-core Bose-Hubbard model with the nearest-neighbor repulsion on a square lattice by using an unbiased quantum Monte Carlo method. In contrast to the previous study[P. Sengupta {\it et. al.}, Phys. Rev. Lett. {\bf 94}, 207202 (2005)], we present the ground-state phase diagrams up to large hopping parameters. As a result, in addition to the known supersolid above half-filling, we find supersolid even below and at half-filling for large hopping parameters. Furthermore, for the strong nearest-neighbor repulsion, we show that the supersolid phase occupies a remarkably broad region in the phase diagram. The results are in qualitative agreement with that obtained by the Gutzwiller mean-field approximation[M. Iskin, Phys. Rev. A {\bf 83}, 051606(R) (2011) and T. Kimura, Phys. Rev. A {\bf 84}, 063630 (2011)]

    Correlation analysis of stochastic gravitational wave background around 0.1-1Hz

    Get PDF
    We discuss prospects for direct measurement of stochastic gravitational wave background around 0.1-1Hz with future space missions. It is assumed to use correlation analysis technique with the optimal TDI variables for two sets of LISA-type interferometers. The signal to noise for detection of the background and the estimation errors for its basic parameters (amplitude, spectral index) are evaluated for proposed missions.Comment: 11 pages, 7 figures, revised version, to appear in PR

    LISA Measurement of Gravitational Wave Background Anisotropy: Hexadecapole Moment via a Correlation Analysis

    Get PDF
    We discuss spatial fluctuations in the gravitational wave background arising from unresolved Galactic binary sources, such as close white dwarf binaries, due to the fact the galactic binary source distribution is anisotropic. We introduce a correlation analysis of the two data streams of the Laser Interferometer Space Antenna (LISA) to extract spherical harmonic coefficients, in an independent manner, of the hexadecapole moment (l=4l=4) related to the projected two-dimensional density distribution of the binary source population. The proposed technique complements and improves over previous suggestions in the literature to measure the gravitational wave background anisotropy based on the time modulation of data as LISA orbits around the Sun. Such techniques, however, are restricted only to certain combinations of spherical harmonic coefficients of the galaxy with no ability to separate them individually. With LISA, m=2,3m=2,3 and 4 coefficients of the hexadecapole (l=4l=4) can be measured with signal-to-noise ratios at the level of 10 and above in a certain coordinate system. In addition to the hexadecapole coefficients, when combined with the time modulation analysis, the correlation study can also be used, in principle, to measure quadrupole coefficients of the binary distribution.Comment: 8 pages, 2 figure

    Chiral Lagrangian and spectral sum rules for dense two-color QCD

    Full text link
    We analytically study two-color QCD with an even number of flavors at high baryon density. This theory is free from the fermion sign problem. Chiral symmetry is broken spontaneously by the diquark condensate. Based on the symmetry breaking pattern we construct the low-energy effective Lagrangian for the Nambu-Goldstone bosons. We identify a new epsilon-regime at high baryon density in which the quark mass dependence of the partition function can be determined exactly. We also derive Leutwyler-Smilga-type spectral sum rules for the complex eigenvalues of the Dirac operator in terms of the fermion gap. Our results can in principle be tested in lattice QCD simulations.Comment: 24 pages, 1 table, no figur

    Can we distinguish between black holes and wormholes by their Einstein-ring systems?

    Full text link
    For the last decade, the gravitational lensing in the strong gravitational field has been studied eagerly. It is well known that, for the lensing by a black hole, infinite number of Einstein rings are formed by the light rays which wind around the black hole nearly on the photon sphere, which are called relativistic Einstein rings. This is also the case for the lensing by a wormhole. In this paper, we study the Einstein ring and relativistic Einstein rings for the Schwarzschild black hole and the Ellis wormhole, the latter of which is an example of traversable wormholes of the Morris-Thorne class. Given the configuration of the gravitational lensing and the radii of the Einstein ring and relativistic Einstein rings, we can distinguish between a black hole and a wormhole in principle. We conclude that we can detect the relativistic Einstein rings by wormholes which have the radii of the throat a≃0.5a\simeq 0.5pc at a galactic center with the distance 10Mpc and which have a≃10a\simeq 10AU in our galaxy using by the most powerful modern instruments which have the resolution of 10−210^{-2}arcsecond such as a 10-meter optical-infrared telescope. The black holes which make the Einstein rings of the same size as the ones by the wormholes are galactic supermassive black holes and the relativistic Einstein rings by the black holes are too small to measure at this moment. We may test some hypotheses of astrophysical wormholes by using the Einstein ring and relativistic Einstein rings in the future.Comment: 13 pages, 2 figures, minor changes from v

    Constitutional Rights of Infants and Toddlers to Have Opportunities to Form Secure Attachment with Incarcerated Mothers: Importance of Prison Nurseries

    Get PDF
    While the number of women is increasing among the prison population, so too is the need to accommodate those who are pregnant and with children. Instead of examining the diminished rights of incarcerated mothers, this paper examines the rights of babies (infants and toddlers) to have opportunities to form a secure attachment with their incarcerated mother. This paper argues this right triggers the government’s affirmative duty to provide prison nurseries. This paper also seeks several aims that include an examination of the issue of prison nurseries, the need for such programs, their history, the constitutional rights of infants and toddlers to have opportunities to form secure attachment with their long-term caregiver, and the policy implications for women or female prisons

    The Dynamics of Exploitation and Class in Accumulation Economies

    Get PDF
    This paper analyses the equilibrium dynamics of exploitation and class in general accumulation economies with population growth, technical change, and bargaining by adopting a novel computational approach. First, the determinants of the emergence and persistence of exploitation and class are investigated, and the role of labour-saving technical change and, even more importantly, power is highlighted. Second, it is shown that the concept of exploitation provides the foundations for a logically coherent and empirically relevant analysis of inequalities and class relations in advanced capitalist economies. An index that identifies the exploitation level, or intensity of each individual can be defined and its empirical distribution studied using the standard tools developed in the theory of inequality measurement

    Disk Galaxy Formation in a LambdaCDM Universe

    Full text link
    We describe hydrodynamical simulations of galaxy formation in a Lambda cold dark matter (CDM) cosmology performed using a subresolution model for star formation and feedback in a multiphase interstellar medium (ISM). In particular, we demonstrate the formation of a well-resolved disk galaxy. The surface brightness profile of the galaxy is exponential, with a B-band central surface brightness of 21.0 mag arcsec^-2 and a scale-length of R_d = 2.0 h^-1 kpc. We find no evidence for a significant bulge component. The simulated galaxy falls within the I-band Tully-Fisher relation, with an absolute magnitude of I = -21.2 and a peak stellar rotation velocity of V_rot=121.3 km s^-1. While the total specific angular momentum of the stars in the galaxy agrees with observations, the angular momentum in the inner regions appears to be low by a factor of ~2. The star formation rate of the galaxy peaks at ~7 M_sun yr^-1 between redshifts z=2-4, with the mean stellar age decreasing from \~10 Gyrs in the outer regions of the disk to ~7.5 Gyrs in the center, indicating that the disk did not simply form inside-out. The stars exhibit a metallicity gradient from 0.7 Z_sun at the edge of the disk to 1.3 Z_sun in the center. Using a suite of idealized galaxy formation simulations with different models for the ISM, we show that the effective pressure support provided by star formation and feedback in our multiphase model is instrumental in allowing the formation of large, stable disk galaxies. If ISM gas is instead modeled with an isothermal equation of state, or if star formation is suppressed entirely, growing gaseous disks quickly violate the Toomre stability criterion and undergo catastrophic fragmentation.Comment: 14 pages, 12 figures, LaTex (emulateapj.cls), submitted to ApJ, high resolution images available at http://www-cfa.harvard.edu/~brobertson/papers/galaxy

    Numerical Analyses of Weakly Nonlinear Velocity-Density Coupling

    Get PDF
    We study evolution of various statistical quantities of smoothed cosmic density and velocity fields using N-body simulations. The parameter C≡/()C\equiv /( ) characterizes nonlinear coupling of these two fields and determines behavior of bulk velocity dispersion as a function of local density contrast. It is found that this parameter depends strongly on the smoothing scale even in quasi-linear regimes where the skewness parameter S3S_3 is nearly constant and close to the predicted value by the second-order perturbation theory. We also analyze weakly nonlinear effects caused by an adaptive smoothing known as the gather approach.Comment: 22 pages, 4 figures, to appear in ApJ (558, Sep 10
    • …
    corecore