29 research outputs found

    Fatigue strength evaluation for bolt-nut connections having slight pitch difference considering incomplete threads of nut

    Get PDF
    Proceedings of 4th International Conference on Fracture Fatigue and Wear, FFW 2015, Ghent University, Belgium, 27-28 August 2015The high strength bolts and nuts are widely used in various fields. In this study the effect of slight pitch difference is considered when the nut pitch is αμm larger than the bolt pitch. In the first place, the fatigue experiment is conducted with varying pitch difference. The results show that the fatigue life is extended to about 1.5 times by introducing the suitable pitch difference under the high stress amplitude. Next, the detail observation is performed on the fractured specimens including the fractured positions and the crack configurations. It is found that the fractured positions and the crack distributions vary depending on the pitch difference. Finally, to clarify the improvement mechanism of the fatigue strength, the finite element method is applied to calculate the stress amplitude and mean stress at each bolt threads, and the incomplete threads at the nut ends are also considered to obtain the accurate analytical results

    Fatigue life improvement by slight pitch difference in bolt-nut connections

    Get PDF
    The bolt-nut connections are widely used in various fields. In this paper, a slight pitch difference is introduced between the bolt and nut in order to study the effect on the fatigue performance. Here, we consider that the nut pitch is a few microns larger than the bolt pitch. Fatigue experiments are conducted for three kinds of specimens with different levels of pitch differences. The obtained S-N curves show that the fatigue life is extended to about 1.5 times by introducing a suitable pitch difference. According to the detailed investigation on the fractured specimens, it is found that the fractured positions and the crack configuration are totally different depending on the pitch difference. The mechanism of the fatigue strength improvement is discussed in terms of the stress amplitude and average stress at each bolt thread

    Effect of Pitch Difference between the Bolt-Nut Connections upon the Anti-Loosening Performance and Fatigue Life

    Get PDF
    In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Fourthly, fatigue experiments are conducted using three different values of pitch difference for various stress amplitudes. It is found that the fatigue life could be extended when a suitable pitch difference is considered Furthermore, the chamfered corners at nut ends are considered, and it is found that the finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving both anti-loosening and fatigue life is proposed

    Fatigue strength evaluation for bolt-nut connections having slight pitch difference considering incomplete threads of nut

    Get PDF
    The high strength bolts and nuts are widely used in various fields. In this study the effect of slightpitch difference is considered when the nut pitch is αμm larger than the bolt pitch. In the first place, the fatigue experiment is conducted with varying pitch difference. The results show that the fatigue life isextended to about 1.5 times by introducing the suitable pitch difference under the high stress amplitude.Next, the detail observation is performed on the fractured specimens including the fractured positions andthe crack configurations. It is found that the fractured positions and the crack distributions vary depending on the pitch difference. Finally, to clarify the improvement mechanism of the fatigue strength, the finite element method is applied to calculate the stress amplitude and mean stress at each bolt threads, and theincomplete threads at the nut ends are also considered to obtain the accurate analytical results.Proceedings of 4th International Conference on Fracture Fatigue and Wear, FFW 2015, Ghent University, Belgium, 27-28 August 201

    微小螺距差對螺栓螺母聯接件的疲勞壽命的影響

    Get PDF
    The bolt-nut connections are widely used in various fields. In this paper, a slight pitch difference is introduced between the bolt and nut in order to study the effect on the fatigue performance. Here, we consider that the nut pitch is a few microns larger than the bolt pitch. Fatigue experiments are conducted for three kinds of specimens with different levels of pitch differences. The obtained S-N curves show that the fatigue life is extended to about 1.5 times by introducing a suitable pitch difference. According to the detailed investigation on the fractured specimens, it is found that the fractured positions and the crack configuration are totally different depending on the pitch difference. The mechanism of the fatigue strength improvement is discussed in terms of the stress amplitude and average stress at each bolt thread. / 本文旨在探討微小螺距差對螺栓螺母聯接件的疲勞壽命的影響. 通過增大螺母的螺距使得螺紋之間的接觸狀況發生變化. 疲勞試驗結果顯示合理的螺距差可以大幅度提高螺栓的疲勞壽命,螺栓也呈現出不同的疲勞破壞形態. 通過對試件的裂紋觀察,發現不同的螺距差導致螺栓在疲勞破話過程中產生不同形態的裂紋

    SORL1 Is Genetically Associated with Late-Onset Alzheimer’s Disease in Japanese, Koreans and Caucasians

    Get PDF
    To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values ,261025 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P=7.3361027 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P=1.7761029) and rs3781834 (P=1.0461028). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P=1.7161025) and rs744373 near BIN1 (P = 1.3961024). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations

    Drosophila Carrying Pex3 or Pex16 Mutations Are Models of Zellweger Syndrome That Reflect Its Symptoms Associated with the Absence of Peroxisomes

    Get PDF
    The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Has Anti-Aging Effects That Protect Articular Cartilage from Age-Related Degenerative Changes

    Get PDF
    To examine the role of connective tissue growth factor CCN2/CTGF (CCN2) in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG) overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS) was measured by using primary cultures of chondrocytes obtained from wild-type (WT) rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage
    corecore