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Abstract

To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association
study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD),
Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for
5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance
was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values ,261025 were
genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1
SNP (rs3781834, P = 7.3361027 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in
the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide
significance with rs11218343 (P = 1.7761029) and rs3781834 (P = 1.0461028). SNPs in previously established AD loci in
Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.7161025) and
rs744373 near BIN1 (P = 1.3961024). The associated allele for each of these SNPs was the same as in Caucasians. These data
demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for
LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder characterized by cognitive dysfunction and memory loss.

Multiple rare mutations in APP, PSEN1, PSEN2 and SORL1

account for most cases of early-onset autosomal dominant AD

[1,2]. Risk of late-onset AD (LOAD), the most common type of

dementia in the elderly, is associated with complex interactions

between genetic and environmental factors. Until recently, APOE

was the only unequivocally recognized major susceptibility gene

for LOAD [1,3]. Several genome-wide association studies (GWAS)

each including more than 5,000 Caucasians identified genome-

wide significant associations for LOAD with nine other loci

including ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A

gene cluster, and PICALM [4,5]. To our knowledge, no large

GWAS for LOAD has been performed in any Asian population.

Because there is a possibility that there exist ethnic-specific LOAD

susceptibility variants, we carried out a large-scale GWAS to

confirm associations at known loci and identify novel loci for

LOAD using a three-stage design including a discovery Japanese

cohort and replication cohorts of Japanese, Korean and Caucasian

subjects.

Methods

Subjects
Japanese datasets. Clinically defined subjects were recruited

by the Japanese Genetic Study Consortium of Alzheimer’s Disease

(JGSCAD: principal investigator, Y.I.) [6,7]. Probable AD cases

were ascertained on the basis of the criteria of the National

Institute of Neurological and Communicative Disorders, and

Stroke-Alzheimer’s Disease and Related Disorders (NINCDS/

ADRDA) [8]. The Mini-Mental State Examination [9], Clinical

Dementia Rating [10], and/or Function Assessment Staging [11]

were primarily used for evaluation of cognitive impairment. Elders

living in an unassisted manner in the local community with no

signs of dementia were used as controls. DNA was extracted from

peripheral blood leukocytes using standard protocols [6]. For the

purpose of this study, the Stage 1 genome-wide association study

(GWAS) dataset included 2024 subjects (1008 AD cases and 1016

SORL1 Association with AD in Multiple Populations
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controls) and the Stage 2 dataset included 1870 subjects (885 AD

cases and 985 controls).

Korean dataset. A total of 339 subjects with AD were

recruited at the Samsung Medical Center in Seoul, Korea. All AD

subjects fulfilled NINCDS-ADRDA criteria for probable AD [8].

These subjects underwent a clinical interview and neurological

examination that were previously described [12]. The absence of

secondary causes of cognitive deficits was assessed by laboratory

tests including complete blood count, blood chemistry, vitamin

B12/folate, syphilis serology, and thyroid function tests. Conven-

tional brain MRI scans (T1-weighted, T2-weighted, and FLAIR

images) confirmed the absence of territorial cerebral infarctions,

brain tumors, and other structural lesions. Healthy control subjects

(n = 1,129) ages 55 to 85 years were recruited from routine health

examination at the same location and showed no evidence of

cognitive dysfunction.

Alzheimer Disease Genetics Consortium

dataset. Summarized information from tests of genetic associ-

ation of AD with SNPs located in the candidate gene regions was

culled from a recent large GWAS conducted by the Alzheimer

Disease Genetics Consortium (ADGC) [5]. Results were computed

for SNPs throughout the genome in a sample composed of 11,840

AD cases and 10,931 cognitively normal elders from 15

independent Caucasian data sets. Details of the quality control

and statistical analysis procedures and genetic models has been

published elsewhere [5].

This study was approved by the Boston University Institutional

Review Board, Institutional Review Board of Niigata University,

and the Institutional Review Boards of all participating institu-

tions. Written informed consent was obtained from all partici-

pants. Next of kin, carer takers or guardians consented on the

behalf of participants whose capacity to consent was compromised.

All subjects were anonymously genotyped. The basic demograph-

ics of the cases and controls before QC in each dataset are

presented in Table 1.

Genotyping
GWAS genotyping was performed in the Stage 1 sample using

Affymetrix GeneChip 6.0 microarrays containing 909,622 SNPs.

Applied Biosystems’ (ABI) TaqMan Assays were used to genotype

individual SNPs in the Japanese and Korean replication cohorts.

APOE genotypes in the Japanese and Korean samples were

determined by haplotypes derived from rs7412 and rs429358

which were genotyped using TaqMan Assays. Details of APOE

genotyping in each ADGC dataset were described previously [13].

Quality Control and Population Substructure
In the Stage 1 sample, SNPs with a genotype call rate (GCR)

,95%, a minor allele frequency (MAF) ,0.05, or significant

deviation from the Hardy-Weinberg equilibrium (HWE) in

controls (P,1026) were excluded. After excluding 83,673 low

quality and 298,304 low frequency SNPs, we removed 196

subjects with a GCR ,95% and 41 subjects whose gender as

determined by analysis of X-chromosome data using the PLINK

program (ver. 1.06) [14] was inconsistent with the reported gender.

The same QC procedures were applied to the Japanese and

Korean replication datasets. We examined population substruc-

ture in the GWAS dataset by analyzing tagging SNPs from the

genome-wide panels using the smartpca module from EIGEN-

STRAT software [15] in a manner described previously [5].

Subsequently, we excluded three subjects who were cryptically

related to other subjects in the dataset and 49 individuals who

were population outliers. The strength of association of the top 10

principal components (PCs) was tested with AD status. The first
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three PCs were nominally associated with AD status. A total of

574,828 SNPs and 1,735 subjects comprising 891 cases and 844

controls passed the QC and were used for imputation and in

further statistical analyses.

Genotype Imputation
Genotypes for all SNPs in Japanese and Caucasians were

imputed with the Markov Chain haplotyping (MaCH) software

[16] using reference haplotypes in the 1000 Genomes database

(version released in February 2012 for Japanese datasets and

version released in December 2010 for Caucasian datasets). This

procedure also filled in missing data for the genotyped SNPs.

Imputation quality was determined as R2, which estimates the

squared correlation between imputed and true genotypes. We

applied threshold criteria for quality control assessment of imputed

SNPs (R2 $0.8) as recommended for 1000 Genomes imputed data

using the IMPUTE2 program [17]. Genotype probabilities for

5,877,918 genotyped and reliably imputed SNPs with a minor

allele frequency (MAF) .0.02 were included in the Japanese

GWAS.

Statistical analysis
Genotyped and imputed SNPs were tested for association with

AD in the Stage 1 dataset using a logistic generalized linear model

(GLM) controlling for age-at-onset (cases)/age-at-exam (controls),

sex and the first three principal components from analysis of of

population substructure. Stage 1 analyses were also performed

based on a model adjusting for these covariates and the number of

APOE e4 alleles. SNPs in the APOE region (between map positions

45,000 kb and 45,800 kb on chromosome 19) were also tested for

association in e3/e3 and e3/e4 subgroups. Genotyped SNPs were

coded as 0, 1, or 2 according to the number of minor alleles under

the additive genetic model. For imputed SNPs, a quantitative

estimate between 0 and 2 for the dose of the minor allele were used

to incorporate the uncertainty of the imputation estimates. All

analyses were performed using PLINK. SNPs attaining a P value

below 561025 were considered for replication in Stage 2. Initially,

only one SNP per region was tested in the replication sample to

minimize the penalty for multiple testing. Additional SNPs from

regions meeting the signifcance threshold in the replication sample

were also evaluated. SNPs with a P value below 161025 in the

combined Stages 1 and 2 samples and nominally significant in

Stage 2 (P,0.05) were advanced to Stage 3.

SNP association results obtained from individual datasets were

combined by meta-analysis using the inverse variance method

implemented in the software package METAL (http://www.sph.

umich.edu/csg/abecasis/Metal/index.html) [18]. An additive

model was assumed and the association results across datasets

were combined by summing the regression coefficients weighted

by the inverse variance of the coefficients. The meta-analysis P-

value of the association was estimated by the summarized test

statistic, after applying a genomic control within each individual

study. Effect sizes were weighted by their inverse variance and a

combined estimate was calculated by summing the weighted

estimates and dividing by the summed weights.

Results

The quantile-quantile plot indicated limited genomic inflation

(l= 1.04in the Stage 1 GWAS results (Fig. S1). A total of 125

SNPs from seven distinct regions showed evidence of association

with P,1024 (Table S1, Fig. S2). In addition to APOE SNP

rs429358 (P = 2.46610249, OR [95% CI] = 5.5 [4.4–6.9]), 12

other SNPs in the APOE region were associated with LOAD at the

genome-wide significance level of P,5.061028. The two most

significant results in this group of SNPs were rs12610605 (PVRL2:

P = 1.38610213, OR [95% CI] = 1.8 [1.5–2.0]) and rs62117161

(between CEACAM16 and BCL3: P = 3.46610212, OR [95% CI]

= 0.47 [0.38–0.58]). Since imputation in the APOE region using

the 1000 Genomes reference panel is unreliable [6], we genotyped

nine SNPs from this region, spanning multiple linkage disequilib-

rium (LD) blocks (Fig. S3) and that were nominally significant in

the APOE e3/e3 subgroup, in the Japanese discovery and

replication samples using TaqMan assays (Table S2). Genome-

wide significant results were obtained for five of these SNPs, but

only the association with PPP1R37 SNP rs 17643262 remained

nominally significant after adjustment for the number of APOE e4

alleles (P = 3.9661024) or in analyses stratified by APOE genotype

(e3/e3: P = 0.01; e3/e4: P = 0.0016).

SNPs from six other distinct chromosomal regions met Stage 2

follow-up criteria (P,561025) and the top SNP from each region

was genotyped in an independent Japanese sample (Table 2). Two

SNPs were nominally significant in the replication sample,

however the effect direction for KIAA0494 SNP rs7519866 differed

from the discovery sample. Modest evidence for replication was

observed only with SORL1 SNP rs4598682 (P#0.05). Subsequent-

ly, we selected an additional four SORL1 SNPs (rs3781834,

rs2282647, rs17125523, and rs3737529) for testing in the Japanese

replication sample that were among the most significant in the

basic or extended models in the discovery sample (Table S1) and

not in LD with rs4598682 (r2,0.2, Figure S4). Two of these SNPs

(rs3781834 and rs17125523) were chosen also because they were

genotyped in the discovery sample and thus would minimize the

effects of potential imputation artifacts in meta-analysis of the two

Japanese samples. Highly significant results were obtained for

SORL1 SNPs rs4598682 (P = 9.5161026), rs3781834

(P = 7.3361027), rs17125523 (P = 5.5161026), and rs3737529

(P = 4.1461026) after combining results from the discovery and

replication samples (Table S3).

These four SORL1 SNPs showing significant association in the

combined samples from Stages 1 and 2 were considered for further

replication in Stage 3. We added rs11218343 to this stage of the

analysis because it was the most significant SORL1 SNP in the

large Caucasian dataset (P = 1.061027), a result which emerged

after pooling the Caucasian discovery GWAS sample and

unpublished data in the replication sample from our previously

published GWAS [5]. These five SNPs were subsequently

evaluated in Stage 3 by meta analysis including the Stage 1 and

2 Japanese, Korean and ADGC Caucasian datasets. SNPs

rs11218343 (P = 2.2061029) and rs3781834 (P = 9.9061029),

attained genome-wide significance in the sample of datasets from

all stages (Table 3, Fig. 1). There was modest evidence of

replication for rs17125523 (meta P = 3.3061026) and rs 3737529

(meta P = 5.1061026). Although the allele frequencies for the top

SNPs were very different between the Asian (MAF .0.2) and

Caucasian (MAF ,0.05) samples (Table 3), there was no evidence

of heterogeneity in the magnitude of the odds ratios or effect

direction among the population groups (P.0.15, Fig. 2). There

was no apparent association in the comparably smaller Korean

dataset; however, the direction of the effect for each SNP was the

same as in the Japanese and Caucasian datsets.

Next, we investigated whether robust genetic associations for

LOAD reported previously in Caucasians [4,5] generalize to

Japanese. After correcting for 15 tests, SNPs rs3851179 located

approximately 90 kb upstream from PICALM (P = 1.7161025) and

rs744373 located approximately 30 kb upstream from BIN1

(P = 1.3961024) were significantly associated with LOAD risk in

the Japanese Stage 1 dataset (Table 4). Nominally significant
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associations were also observed for SNPs in CR1, CLU, and

ABCA7. Of the eight SNPs tested in the small Korean sample,
nominally signficant results (P,0.05) were obtained for one SNP

in CLU and PICALM, each with the same pattern of association

and comparable effect size as in Japanese.

Discussion

Our multi-stage GWAS of LOAD identified for the first-time

genome-wide significant association with SORL1. Genetic associ-

ation with SORL1 was first established in a study focused on genes

encoding proteins involved in vacuolar protein sorting [19]. Most,

but not all, subsequent studies in Caucsians replicated this finding

(summarized in Alzgene database: http://www.alzgene.org/).

Confirmatory evidence of association with SORL1 SNPs has also

been reported in comparatively small samples of Chinese and

Japanese (reviewed in [20]). These findings are independent of

previous candidate gene studies of SORL1 in Japanese (two

subjects in common) and with Caucasians in the Rogaeva et al.

study [19] (less than 2% overlap).

The two genome-wide significant SORL1 SNPs, rs11218343 and

rs3781834 are located at chromosome positions 121,435,587 base

pairs and 121,445,940 base pairs, respectively, and thus between

the two previously reported strongly associated 3-marker haplo-

types that extend upstream from rs641120 (121,380,965 base

pairs) and downstream from rs1699102 (121,456,962 base pairs)

[19]. A recent meta-analysis including more than 30,000

Caucasian and Asian subjects demonstrated that multiple SORL1

SNPs in distinct regions are associated with AD [20], a finding

substantiated in an association study of SORL1 SNPs with brain

MRI traits in LOAD families [21]. Further analysis of our large

Caucasian sample suggests that the association peak at rs3781834

is independent of at least one of the two distinct haplotypes

previously associated with AD in an independent sample of non-

Hispanic Caucasians, Caribbean Hispanics and Israeli-Arabs

(Fig. S5) [19], Since all of the SNPs at the association peaks

reported in this study and previously are intronic, functional

studies are required to determine the identity of pathogenic

variants at these locations.

Remarkably, the less frequent alleles at rs11218343 and

rs3781834 are protective in both Japanese and Caucasian datasets

with very similar odds ratios (range 0.74 to 0.83) despite the fact

that these alleles are much rarer in Caucasians (4% and 2%,

respectively) than in Japanese (34% and 23%, respectively). The

rarity of these SNPs in Caucasians, as well as allelic heterogeneity,

may explain why SORL1 did not previously emerged as a genome-

Table 2. Top-ranked genome-wide association results in the Japanese discovery (Stage 1) sample (P,2.561025) and their
replication in Japanese (Stage 2).

SNP CH:MB Nearest Gene MA MAF
#
SNPs Discovery (Stage 1)

Replication (Stage
2) Meta-Analysis (Stages 1+2)

OR (95% CI) P OR (95% CI) P OR (95% CI) P

rs7519866 1:47.0 KIAA0494 G 0.37 52 0.71 (0.61–0.83) 9.7061026 1.15 (1.01–1.32) 0.04 0.90 (0.57–1.44) 0.67

rs913360 9:111.7 PALM2 G 0.28 20 1.56 (1.43–1.70) 1.8361027 1.11 (0.96–1.29) 0.16 1.29 (1.15–1.44) 6.661026

rs1273007 10:9.0 LOC338591 T 0.27 39 0.68 (0.62–0.74) 3.0861026 0.95 (0.81–1.10) 0.47 0.81 (0.73–0.91) 2.261024

rs10898417 11:85.2 SYTL2 G 0.15 2 0.59 (0.53–0.66) 1.1761026 1.02 (0.85–1.22) 0.83 0.82 (0.71–0.93) 0.003

rs4598682 11:121.1 SORL1 G 0.23 11 0.68 (0.57–0.81) 2.2561025 0.83 (0.68–1.00) 0.05 0.75 (0.66–0.85) 9.561026

rs11621843 14:92.2 RIN3 G 0.26 19 1.47 (1.35–1.60) 5.1961026 1.03 (0.88–1.20) 0.72 1.21 (1.08–1.36) 8.161024

CH:MB, chromosome:position (in megabasepairs, build 19); MA, minor allele; MAF, minor allele frequency; # SNPs, the number of SNPs for which P#161024 in the
discovery (Stage 1) sample; OR, odds ratio; P P-value;
Selected SNPs represent the strongest association within each locus.
doi:10.1371/journal.pone.0058618.t002

Figure 1. Regional association plot for the SORL1 region on
chromosome 11 in the three-stage design. For each SNP, the
chromosomal location is shown on the x-axis and the significance level
for association with LOAD is indicated by a –log10P value on the y-axis.
P-values are expressed as –log10(P) (y-axis) for every tested SNP ordered
by chromosomal location (x-axis). Genomic position was determined
using the NCBI database (Build 37.1). Computed estimates of linkage
disequilibrium (LD; r2) between SNPs in this region with the top-ranked
SNP (rs3781834) in the Japanese discovery (J1) dataset are shown as red
circles for r2$0.8, orange circles for 0.5#r2,0.8, light blue circles for
0.2#r2,0.5, and dark blue circles for r2,0.2 using hg19/1000 Genomes
of Asian populations (ASN; release on November 2010) combined from
Han Chinese (CHB) and Japanese (JPT). Meta-analysis P-values are
shown as purple diamonds for the Japanese datasets (J1+J2) and all
datasets (J1+J2+K+C) including Japanese, Korean (K), and Caucasians
(C). Two genome-wide significant SNPs in the final stage (rs3781834 and
rs11218343) are presented. The gene structure and reading frame are
shown below the plot. Exons are denoted with vertical bars. The LD
between rs3781834 and rs11218343 is 0.57 in the ASN reference
population.
doi:10.1371/journal.pone.0058618.g001
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wide significant AD locus in much larger GWAS [4,5]. Given the

discovery sample size, effect size (odds ratio [OR] = 0.74) and

MAF (0.23) of the top SORL1 SNP (rs3781834) in the Japanese

sample, and a significance level of 261025 (i.e., threshold for

including a SNP in the Stage 2 replication phase), calculation of

power post hoc using the PAWE-3D program [22] confirmed that

the discovery sample had sufficient power (83.7%). By comparison,

the Caucasian sample of 22,771 subjects had only 52.8% power to

detect association with this SNP at the observed significance level

of 7.961024 and OR (0.78) and a much lower MAF (0.02) than in

Japanese.

The most significant result in the GWAS in Japanese was

obtained for PALM2 SNP rs913360 (P = 1.861027), but this SNP

was not significant in the Japanese replication sample (P = 0.16)

and the result for the combined Japanese datasets was less

significant than in the discovery sample (P = 6.661026). There was

no evidence in the large Caucasian dataset supporting association

for rs913360 (P = 0.38) or other PALM2 SNPs.

Figure 2. Forest plots of the two most strongly associated SNPs, rs3781834 (A) and rs11218343 (B), in the SORL1 region showing the
strength and pattern of significance in the Japanese discovery and each replication dataset in the model of adjusting for
population structure, age, and sex.
doi:10.1371/journal.pone.0058618.g002
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We obtained evidence in Japanese and Korean populations for

association of AD with the same SNPs in the PICALM and BIN1

regions that were identified as genome-wide significant in multiple

large GWAS in Caucasians [4,5]. There are no previously

reported association studies of these loci in Japanese. Several

small association studies of PICALM in comparatively smaller

Chinese samples have yielded conflicting results [23–25]. We also

found nominally significant associations in the Japanese sample for

previously associated SNPs in CR1, CLU, and ABCA7. Lack of

asociation with EPHA1, CD2AP, MS4A6A, and CD33 may be due

to insufficient power, different linkage disequilibrium structure of

these regions than in Caucasisans, locus heterogeneity or

intragenic heterogeneity.

In addition, our analyses showed numerous highly significant

results for imputed SNPs in the APOE region (including CEACAM/

BCL3, PVRL2, TOMM40, and LOC284352) even after adjustment

for the dose of the e4 allele. However, recognizing that the

reliability of imputation is poor for SNPs in this region [13], we

genotyped 10 of the significant SNPs in the Japanese discovery and

replication datasets. Only one of these results, a PPP1R37 SNP,

was nominally significant after adjustment for dose of e4.

Association of AD with this SNP, which is located approximately

225 kb from APOE, has not been observed previously. PVRL2 and

APOE are located in a genomic region sandwiched between two

recombination hotspots [26], where strong association signals for

LOAD have been reproducibly detected in Caucasians [1,5], but

dissipate almost completely for all non-APOE loci after condition-

ing on APOE, suggesting that no other loci in this region influence

LOAD susceptibility [13]. This conclusion is consistent with the

observation of moderate linkage disequilibrium between the SNPs

determining APOE genotype, rs7412 and rs429358 (Fig. S5), SNPs

showing genomewide significant evidence for association with

LOAD without adjustment for APOE genotype, and our prior

LOAD association studies with SNPs in this region among

Caucasians [13].

SorL1, also known as SorLA and LR11, and APP proteins are

co-localized in the endosomal and Golgi compartments [27].

SorL1 through its co-dependent interaction with vps26 regulates

the intracellular transport and processing of APP, resulting in

reduction of amyloid beta (Aß) peptide production [20,27,28].

SORL1 knock-out mice carrying both pathogenic mutations in the

PSEN1 (exon 9 deletion) and APP (Swedish, K595M/N596L)

Table 3. Meta-analysis of top-ranked association results with SORL1 in Japanese, Korean, and Caucasian datasets.

SNP MA Japanese (Stage 1+2) Korean (Stage 3) Caucasian (Stage 3) Meta-Analysis (Stages 1–3)

MAF OR (95% CI) P MAF OR (95% CI) P MAF OR (95% CI) P OR (95% CI) P

rs4598682 G 0.23 0.75 (0.66–0.85) 9.561026 not available 0.02 1.04 (0.85–1.28) 0.68 0.82 (0.72–0.93) 3.661023

rs11218343 C 0.34 0.83 (0.75–0.92) 3.861024 0.31 0.96 (0.79–1.17) 0.68 0.04 0.75 (0.67–0.83) 1.061027 0.81 (0.75–0.87) 2.261029

rs3781834 G 0.23 0.74 (0.66–0.84) 7.361027 0.23 0.94 (0.75–1.16) 0.55 0.02 0.78 (0.68–0.9) 7.961024 0.78 (0.72–0.85) 9.961029

rs17125523 G 0.25 0.77 (0.68–0.86) 5.561026 0.23 0.96 (0.78–1.19) 0.72 0.02 0.85 (0.74–0.99) 0.034 0.82 (0.76–0.89) 3.361026

rs3737529 T 0.25 0.77 (0.68–0.86) 4.161026 0.26 1.04 (0.84–1.29) 0.70 0.02 0.83 (0.71–0.97) 0.016 0.82 (0.76–0.89) 5.161026

CH:MB, chromosome:position (in megabase pairs, build 19); MA, minor allele; MAF, minor allele frequenc; OR, odds ratio; P P-value.
doi:10.1371/journal.pone.0058618.t003

Table 4. Association of LOAD in Asians with SNPs showing genome-wide significance in Caucasians.

Gene CH BP SNP MA Japanese Korean

MAF P OR (95% CI) MAF P OR (95% CI)

CR1 1 207,692,049 rs6656401 A 0.04 9.02E-03 1.38 (1.08–1.76) 0.04 3.75E–01 1.24 (0.77–1.99)

CR1 1 207,784,968 rs3818361 A 0.39 2.54E–01 0.94 (0.85–1.04) 0.31 4.08E–01 0.92 (0.76–1.12)

BIN1 2 127,894,615 rs744373 G 0.33 1.39E–04 1.25 (1.11–1.4) 0.36 8.05E–01 0.98 (0.81–1.18)

CD2AP 6 47,453,378 rs9349407 G 0.14 3.83E–01 0.94 (0.82–1.08) NT – –

EPHA1 7 143,109,139 rs11767557 C 0.17 6.47E–01 1.03 (0.9–1.17) NT – –

CLU 8 27,456,253 rs2279590 T 0.25 7.01E–03 0.85 (0.76–0.96) 0.2 9.70E–02 0.82 (0.65–1.04)

CLU 8 27,464,519 rs11136000 T 0.28 1.09E–02 0.87 (0.78–0.97) 0.23 3.61E–02 0.79 (0.63–0.98)

CLU 8 27,468,862 rs9331888 G 0.41 6.97E–02 1.1 (0.99–1.22) 0.47 1.92E–01 0.89 (0.74–1.06)

MS4A6A 11 59,939,307 rs610932 T 0.3 7.99E–01 0.99 (0.89–1.1) NT – –

MS4A6A 11 59,971,795 rs670139 T 0.4 8.23E–01 0.99 (0.89–1.09) NT – –

MS4A6A 11 60,034,429 rs4938933 C 0.27 3.23E–01 1.06 (0.95–1.18) NT – –

PICALM 11 85,868,640 rs3851179 T 0.39 1.71E–05 0.8 (0.73–0.89) 0.34 1.99E–02 0.79 (0.66–0.96)

ABCA7 19 1,046,520 rs3764650 G 0.42 3.66E–02 1.13 (1.01–1.27) NT – –

EXOC3L2 19 45,708,888 rs597668 C 0.43 8.23E–03 0.88 (0.79–0.97) 0.37 7.31E–01 0.97 (0.8–1.17)

CD33 19 51,727,962 rs3865444 A 0.2 4.92E–01 1.04 (0.92–1.18) NT – –

NT not tested; P,0.05 was italized.
doi:10.1371/journal.pone.0058618.t004
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exhibited increased production and accumulation of Aß [29].

SORL1 variants might influence the CSF Aß42 level in AD

patients [30]. Recently, Pottier et al. sequenced the exomes of 29

index cases with autosomal dominant early-onset AD who lacked

mutations in APP, PSEN1 and PSEN2 [2]. Seven of these subjects

had private SORL1 mutations (2 nonsense and 2 missense) that

were predicted to have a pathogenic effect. By comparison, the

two genome-wide significant SNPs in this study are both intronic.

It is expected that future large resequencing studies of SORL1 will

identify the functional variants, thus providing important clues

about the mechanisms governing normal and abnormal action of

SorL1 on processes leading to LOAD. The emergence of SORL1

as a genome-wide significant locus for AD confirms existing

genetic and functional evidence and elevates the importance of

intracellular trafficking involving retromer and the Golgi-to-

endosome as a key pathway leading to AD [31,32].

Supporting Information

Figure S1 Quantile-quantile (Q-Q) plot of observed (y-
axis) vs. expected (x-axis) P-values from tests of associ-
ation genome-wide (5,877,918 SNPs) adjusted for popu-
lation structure, age and sex for LOAD in the Japanese
discovery sample. Genomic inflation was low (l= 1.047).

(TIF)

Figure S2 Manhattan plot of observed –log10 P-values
for genome-wide SNP association tests for LOAD (y-axis)
according to chromosomal location (x-axis) in the
Japanese discovery sample adjusted for population
structure, age, and sex. All genome-wide significant SNPs

(above the horizontal line corresponding to P = 561028 on the y-

axis) are located in the APOE region on chromosome 19.

(TIF)

Figure S3 Linkage disequilibrium (r2) among SNPs in
the APOE region genotyped using TaqMan calculated in
the Japanese discovery (A) and replication (B) datasets.
APOE genotype is derived from haplotypes of coding SNPs

rs429358 and rs7412.

(TIF)

Figure S4 Linkage disequilibrium (r2) among SNPs in
the SORL1 region genotyped in the Japanese discovery
(A) and replication (B) datasets.
(TIF)

Figure S5 Comparison of SORL1 association findings in
the current study with association signals previously
identified by Rogaeva et al. [20]. (A) Regional association

plot of the SORL1 region. P-values are expressed as –log10(P) (y-

axis) for every tested SNP ordered by chromosomal location (x-

axis) and represented as blue rectangles for the Japanese discovery

set (J1), light blue diamonds for the ADGC Caucasian set (C), pink

circles for meta-analysis of Japanese discovery and Caucasian sets

(J1+C), and red circles for meta-analysis of Japanese discovery,

Japanese replication (J2), Korean (K), and Caucasian sets

(J1+J2+K+C). The numbers below the line showing the orienta-

tion of SORL1 are the designations for associated SNPs in the

Rogaeva et al. study: 8 = rs668387, 9 = rs689021, 10 = rs641120,

11 = rs4935775, 19 = rs2070045, 22 = rs1699102, 23 = rs3824968,

24 = rs2282649, and 25 = rs1010159. Recombination hotspots are

indicated by the continuous blue line behind the symbols for the

SNP P-values. (B) Linkage disequilibrium (r2) of the previously

associated SNPs in the SORL1 region [20] in the HapMap 2

reference Japanese population (JPT). The association signal with

rs3781834 (contained in Block 2) appears to be independent of one

of the distinct AD-associated haplotypes reported by Rogaeva

et al. [20] (including SNPs in Block 1), but not necessarily

independent of the other AD-associated haplotype reported by

Rogaeva et al which includes rs1699102 in Block 2 and the SNPs

in Block 3.

(TIF)

Table S1 Top-ranked GWAS results in the Japanese
GWAS dataset (P,161024 and imputation quality $0.8)
with and withut adjustment for the number of APOE e4
alleles.
(DOCX)

Table S2 Association of individually genotyped SNPs in
the APOE region in models with and without adjustment
for the number of APOE e4 alleles.
(DOCX)

Table S3 Association results for SORL1 SNPs genotyped
in the Japanese replication sample.
(DOCX)
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