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Abstract 

In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, 

by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut 

touches the clamped body, is measured experimentally. Secondly, the tightening torque is 

determined as a function of the axial force of the bolt after the nut touches the clamped body. 

The results show that a large value of pitch difference may provide large prevailing torque that 

causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt 

axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined 

taking into account the anti-loosening and clamping abilities. Fourthly, fatigue experiments are 

conducted using three different values of pitch difference for various stress amplitudes. It is 

found that the fatigue life could be extended when a suitable pitch difference is considered 

Furthermore, the chamfered corners at nut ends are considered, and it is found that the finite 

element analysis with considering the chamfered nut threads has a good agreement with the 

experimental observation. Finally, the most desirable pitch difference required for improving 

both anti-loosening and fatigue life is proposed.  

Keywords: Bolt-nut connection, Pitch difference, Anti-loosening performance, Fatigue life, 

Finite element method 
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1 Introduction 

The bolt-nut connections are important joining elements and are widely used to 

connect and disconnect members conveniently at a low cost. Reference [1] fully 

reviewed the history as well as the evolution of the screw fasteners. To ensure that 

structures are safety joined, good anti-loosening performance and high fatigue strength 

are required. Most previous studies have been mainly focusing on anti-loosening 

performance [2-7], and few studies have contributed to improvements in the fatigue 

strength [8-17]. This is because a high stress concentration factor, e.g. Kt=3-5, appears 

at the No.1 bolt thread and it is not easy to reduce it. Moreover, usually for special bolt-

nut connections the anti-loosening ability affects the fatigue strength and the cost 

significantly. In other words, anti-loosening bolt-nut connections have not been 

developed until now without a reduction in fatigue strength and a raising in the cost.  

This paper, therefore, focuses on the effect of pitch difference in a connection on the 

anti-loosing performance and fatigue life. As shown in Fig. 1, if the nut pitch is larger 

than the bolt pitch, the thread No. 1 at the left-hand side is in contact before the loading 

and becomes in no-contact status after the loading as shown in Fig. 1 (a). However, if 

the nut pitch is smaller than the bolt pitch, the thread No.1 at the right-hand side is in 

contact before the loading and remains in contact after loading, also the contact force 

becomes larger after the loading as shown in Fig. 1 (b). Therefore, the largest stress 

concentration at thread No.1 can be reduced only by a larger nut pitch.  

The concept of differential pitch was first suggested by Stromeyer [18] in 1918. He 

suggested that the load distribution in a threaded connection thread could be optimized 

by varying the relative pitches. Then, the theoretical load distribution in bolt-nut has 

been developed by Sopwith [19], who also used his formula to discuss the load 

distribution improvement along the bolt threads by varing pitch. He found that a smaller 
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pitch in the bolt than in the nut would improve the load distribution. Sparling [20] found 

that the fatigue strength of the bolt can be improved by increasing the clearance between 

the first few engaged threads at the load bearing face of the nut by tapering the nut 

thread, which produces an effective difference in pitch. This modification was 

investigated by Kenny and Patterson [21, 22] by applying the frozen stress three-

dimensional photoelasticity. Maruyama [23] analyzed the influence of pitch error and 

the loaded flank angle error of the bolt thread upon the stress at the root of the bolt 

thread by copper-electroplating method with the finite element method. It was 

considered that the pitch adjustment has a larger effect than the flank angle adjustment 

for improving the fatigue strength of the bolt thread. 

However, the previous studies on pitch difference were limited to fatigue strength 

improvement, and the effect of pitch difference on the anti-loosening performance has 

not been investigated yet. There is no systematic experimental data are available, e.g. 

the S-N curves for specimens of different pitch differences have not been obtained. 

Table 1 shows a comparison of some special bolt-nut connections. Most of the special 

bolt-nuts have either more components or very special geometry, leading to a complex 

manufacture process and a high cost which is usually more than 3 times of the normal 

bolt-nut. The suggested nut in this study can be manufactured as the same way as the 

normal nut, and the cost is predicted to be about 1.5 times of the normal nut considering 

the modification of thread tap as well as the checking procedure on the pitch difference. 

Our previous experimental work clarified that the fatigue life is improved by 

introducing a suitable pitch difference under a certain level of stress amplitude [24, 25]. 

In this study, at first, the effect of pitch difference on the anti-loosening performance 

will be studied experimentally, and the most desirable pitch difference will be proposed 

taking into account the effect on clamping ability. Furthermore, the fatigue experiments 
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will be carried out to investigate the effect of pitch difference on the improvement of 

fatigue life. The finite element analysis will also be applied to discuss the stress status at 

bolt thread. Taking the anti-loosening performance and the fatigue life improvement 

into account, the most desirable pitch difference will be proposed. 

2 Effect of the Pitch Difference on the Nut Rotation 

2.1 Bolt-Nut Specimens  

Japanese Industrial Standard (JIS) M16 bolt-nut connections were employed to study 

the effect of a slight pitch difference. Figure 2 shows the dimensions of bolt-nut 

specimen used in this study. Figure 3 shows a schematic illustration of bolt-nut 

connection having pitch differences. Usually, standard M16 bolts and nuts have the 

same pitch of 2 mm, but herein the nut pitch is slightly larger than the bolt pitch. The 

clearance between the bolt-nut threads is equal to 125 μm. The bolt material was 

chromium-molybdenum steel SCM435 (JIS), and the nut material was medium carbon 

steel S45C (JIS) quenched and tempered, whose properties are indicated in Table 2, and 

whose stress-strain curves are shown in Fig. 4, respectively.  

Figure 3 (a) also shows a contact status between bolt and nut threads during the 

tightening process. As the nut is screwed onto the bolt, the pitch difference is 

accumulated. Finally, the first and sixth nut threads become in contact with the bolt 

threads as shown in Fig. 3 (a). The distance, δt, where the contact takes place, can be 

obtained geometrically using Equations (1) and (2).     

2 ,
tan

y

c x x

C
n C C


 


                            (1) 

                    t cn p                                     (2) 

where p is the pitch of bolt (2 mm), α is the pitch difference, nc is the number of nut 

thread in contact except for n=1, θ is the thread angle (=60
o
), ( ) / 2     , and Cx 
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and Cy are the horizontal and vertical clearances between bolt and nut as shown in Fig. 3 

(b). The specimens in this study had five different levels of pitch difference α, namely 

α=0 (for standard connection), αsmall, αmiddle, αlarge and αverylarge, Herein, it should be 

noted that the nut has 8 threads and therefore Equation (1) is valid when nc is less than 

8. Table 3 shows the distance, δt, and nut thread number in contact, nc, obtained from 

Equations (1) and (2). The distance, δt, can be predicted for αmiddle, αlarge and αverylarge, 

although no thread contact may be expected for αsmall, because nc is larger than the total 

number of threads number 8 for the nut. 

2.2 Prevailing Torque  

After the nut threads become in contact over distance δt as shown in Fig. 3 (a), the so-

called prevailing torque is required for the nut rotation even though the nut does not 

touch the clamped body yet. Table 3 also lists the prevailing torque Tp measured by 

using an electric torque wrench.  

For α=αsmall, the value of nc is larger than 8, and therefore all threads are in non-

contact status and the prevailing torque was zero experimentally. For α=αmiddle, since 

value nc is smaller than 8, the threads are in contact and prevailing torque was Tp=25 

N∙m. For α=αlarge, prevailing torque was Tp=50 N∙m, and for α=αverylarge the threads 

deformed largely and the nut was locked before touching the clamped body since it 

cannot be rotated anymore. 

2.3 Prevailing Torque vs Clamping Force  

Since the bolt and nut are used for connecting components or structures, the clamping 

ability to produce enough bolt-axial force is essential. Therefore, after the nut touches 

the clamped body, the relationship between the tightening torque and the clamping force 

was investigated. Note that tightening torque T is different from prevailing torque Tp, 
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which is defined only before the nut touches the clamped body. To obtain the 

relationship between torque and clamping force, the torque was controlled by using an 

electric torque wrench, and the clamping force was measured by using the strain gauge 

attached to the clamped body surface as shown in Fig. 5 (a). The uniaxial strain gauge 

with a length of 2 mm KFG-2 (Kyowa Electronic Instruments Co., Ltd.) was used in 

this measurement. Before the experiments, calibration tests were performed by 

compressing the clamped body to obtain the relationship between the clamping force 

and surface strain as shown in Fig. 5 (a). Similar tests were performed to calibrate the 

torque wrench as shown in Fig. 5 (b). In order to compare anti-loosening performance 

for different pitch differences, the same tightening torque was applied. When the 

tightening torque of 70 N·m was applied to the standard bolt-nut (α=0), the bolt-axial 

force became 24 kN. The bolt axial force 24 kN is rather smaller compared to the 

normal bolt-axial force as the standard bolt-axial force 59.3 kN recommended in [26]. 

However, if a larger bolt-axial force is used, the effect of α on the anti-loosening 

performance cannot be clearly demonstrated because the bolt-nut seizure occurs. In fact, 

when a torque of 150 N·m was applied in our preliminary experiments, bolt-nut seizure 

was sometimes observed even for α＝0 and α＝αsmall. This is because in this study, 

turning was used for manufacturing nuts, which leads to the bolt-nut seizure occurring 

more easily than tapping, which is usually used for manufacturing nuts. The tapping 

was not used in this study because of the high cost. However, in the further research, the 

tapping nut can be used to prevent the bolt-nut seizure. In this study, therefore, the 

smaller tightening torque of 70 N·m is used to compare the anti-loosening ability 

conveniently. 

Figure 6 shows the tightening torque vs. clamping force as experimentally obtained. 

When α=αsmall, the torque-clamping force relationship was same with the one of α=0. 
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When α=αmiddle, the prevailing torque of 25 N∙m was required before the nut touches the 

clamped plate. Under the same tightening torque of 70 N∙m, the clamping force was 

reduced to 20 kN. When α=αlarge, under a torque of 70 N∙m the axial force decreased 

significantly to 8 kN, which was only 1/3 of the axial force of α=0. 

3 Loosening Experiment 

3.1 Device  

Based on the torque-axial force relationship obtained above, the loosening 

experiments were performed to investigate the effect of pitch difference on the anti-

loosening performance. For each pitch difference α, two specimens were tested. As 

shown in Fig. 7, the experimental device was an impact-vibration testing machine based 

on NAS3350 (National Aerospace Standard), whose vibration frequency was about 30 

Hz, and vibration acceleration is 20 g. The maximum vibration cycle of NAS3350 is 30 

000, therefore, if the number of vibration cycles was over 30 000, the anti-loosening 

performance may be considered to be good enough. A counter connected with the 

experimental device shows the number of cycles of vibrations. As states in Section 2.3, 

the bolt-axial force 24 kN was considered for the standard bolt-nut, and the 

corresponding tightening torque was 70 N∙m. In order to compare the anti-loosening 

performance under the same condition, in this paper, the nuts were tightened to the same 

torque of 70 N∙m for all the specimens. 

3.2 Results  

Table 4 lists the number of cycles for the start loosening and the nut dropping. Table 

4 also lists the prevailing torque measured in the loosening experiments and the bolt 

axial forces estimated from Fig. 6. For α=0 and α=αsmall, the nuts dropped at about 1,000 
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cycles. For α=αmiddle, the nuts did not drop until 30 000 cycles, but the loosening was 

observed for one specimen. For α=αlarge, no loosening was observed until 30 000 cycles 

although the axial force was estimated to be only 8 kN. It may be concluded that if α is 

too small, the anti-loosening cannot be expected and if α is too large, the clamping 

ability is not good enough. By considering both the anti-loosening and clamping 

abilities, α=αmiddle can be selected as the most suitable pitch difference. It should be 

noted that the most desirable pitch difference of α=αmiddle was obtained with a clearance 

of Cy=125 μm.  

4 Finite Element Analysis  

The previous discussion shows that α=αlarge has a good anti-loosening performance 

but insufficient clamping ability. This is due to the large deformation of the threads 

during the tightening process. To confirm this, an axisymmetric model of the bolt-nut 

connection was constructed by using the FEM code MSC.Marc/Mentat 2012. The 

material of the bolt was SCM435 and the material of the nut was S45C to match the 

experimental conditions. These stress-strain curves are indicated in Fig. 4. Herein, bolt, 

nut and clamped body are modeled as three bodies in contact. In the tightening process, 

the accumulated pitch difference causes the axial force between the bolt threads 

engaged with the nut thread. In this modelling, the bolt head is fixed in the horizontal 

direction, and the tightening process is expressed by shifting the nut threads position 

discontinuously, one by one, at the pitch interval. As the nut is moving towards the bolt 

head, the accumulation of the pitch difference leads to a slight overlap between the bolt 

threads and the nut threads. The direct constraints method is invoked in the detection of 

contact in MSC. Marc [27], then, the nut is compressed while the bolt is stretched in the 

simulation. In this way, the axial force between the bolt threads can be investigated step 

by step as the nut is shifted onto the bolt. It should be noted that this axisymmetric 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

9 

simulation may include some numerical errors but the real axial force between the bolt 

threads is difficult to be measured experimentally because the nut is engaged at this 

position. The multifrontal sparse solver was used. The isotropic hardening law was 

assumed with von Mises yield criterion. Friction coefficient of 0.3 was assumed and 

Coulomb friction was used. In the next sub-section, the results for α=αmiddle and 

α=αverylarge will be compared. 

4.1 Bolt Axial Force  

Since the nut pitch is larger than the bolt pitch, a bolt axial force, Fα, in tension 

appears between the bolt threads. Fα corresponds to prevailing torque Tp. It should be 

noted that Fα is different from the bolt axial force (clamping force) obtained in Fig. 6. 

Here, the axial force Fα between bolt threads arising from the accumulation of pitch 

difference in the tightening process. Figure 8 (a) indicates Fα for α=αmiddle before the nut 

touches the clamped body from Position A to Position G. Position A is where the 

prevailing torque appears, and Position B is where the nut thread shifted at the pitch 

interval from Position A and so on. Finally, Position G is where the nut starts contacting 

the clamped body. From Position A to Positions B, C, the whole nut is being shifted 

onto the bolt, and therefore the accumulated pitch difference affects the results. From 

Position C to Positions D, E, F, G, the pitch difference is not accumulated since the 

whole nut is already in contact with the bolt.  

Figure 8 (b) shows Fα for α=αverylarge from Position A to Position H. Position A is 

where the prevailing torque appears, and Position H is where the nut starts contacting 

the clamped body. In contrast to the case of α=αmiddle, as the nut is being shifted onto the 

bolt, the bolt axial forces corresponding to nut threads No.1 and No.8 become smaller 

than that in the middle part. This result is due to nut threads No.2 and No.7, which are 
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also in contact as well as threads No.1 and No.8. Under α=αmiddle only nut threads No.1 

and No.8 are in contact with bolt threads. 

4.2 Plastic Deformation  

Figure 9 (a) shows the equivalent plastic strain of threads for α=αmiddle at Position G. 

Similarly, Fig. 9 (b) shows the equivalent plastic strain of threads for α=αverylarge at 

Position H. It may be concluded that too large pitch difference α=αverylarge may cause the 

large deformation at nut threads resulting in deterioration of bolt clamping ability. A 

suitable pitch difference may cause the reasonable deformation and may not reduce the 

clamping force. 

5 Effect of the Pitch Difference on the Fatigue Strength 

5.1 Results and Discussion  

Our previous experiments clarified that the fatigue life was improved by introducing 

a pitch difference α=αsmall under a certain level of stress amplitude [24-25]. According 

to the loosening experiments, it was found that α=αmiddle was the most desirable pitch 

difference to realize the anti-loosening performance. To improve the fatigue life as well 

as the anti-loosening performance, fatigue experiments were conducted systematically 

for three types of specimens, i.e. α=0, α=αsmall and α=αmiddle with various levels of stress 

amplitude. 

The 392 kN Servo Fatigue Testing Machine with a frequency of 8 Hz was used in this 

study. The pulsating tension fatigue experiments with a stress ratio of R=0.14-0.56 were 

conducted under a fixed average stress of σm= 213 MPa. Figure 10 shows the obtained 

S-N curves. Independent of α, it was found that the fatigue limit at N=2×10
6
 cycles was 

60 MPa.  
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The fractured specimens were first investigated. As an example, Fig. 11 shows 

longitudinal sections for α=0, α=αsmall and α=αmiddle, when the stress amplitude σa=100 

MPa. For α=0, the initial crack may occur at thread No.2, and final fracture happened at 

thread No.1. For α=αsmall and α=αmiddle, long cracks were observed at threads No.5 and 

No.6, and therefore initial crack may occur at threads No.5 or No.6 extending towards 

thread No.1. Moreover, when the stress amplitude was σa=60 MPa, the fractured 

specimens of α=αsmall and α=αmiddle also showed more than 1 mm long cracks initiating 

from the thread surface although no long crack was observed for α=0. Therefore, the 

actual fatigue limit of the bolt specimen may be lower than 60 MPa for α=αsmall and 

α=αmiddle.  

Figure 12 shows the crack initiation and extension mechanism for α=αsmall and 

α=αmiddle. As shown in Fig.12 (a), crack initiated at thread No.6. After the crack 

extended at No.6, the distributed load F6 became smaller and F5 became larger as shown 

in Fig. 12 (b),   
    

 . Then, a new crack initiated at thread No.5 as show in Fig.12 (c). 

By extending new cracks from No.6 toward No.1, the finial fracture happened nearby 

No.1. In this way, since many cracks initiated and propagated one by one, the fatigue 

life of α=αsmall and α=αmiddle can be extended compared with the one of α=0. 

The experimental observation in Fig.11 shows that the crack initiated around the root 

of bolt thread ψ=-60
o～60

o
, instead of the nut thread contact region. Therefore, in this 

study, the contact fatigue concept was not considered. 

When the stress amplitude was larger than 80 MPa, as shown in Fig. 10, the fatigue 

life for α=αsmall was about 1.5 times larger than that of α=0. Also, the fatigue life for 

α=αmiddle was about 1.2 times larger than that of α=0. The results showed that the most 

desirable pitch difference α=αsmall for fatigue performance was different from the most 

desirable pitch difference of α=αmiddle for anti-loosening performance. 
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In Fig.10, there are different fatigue data between α=αsmall and α=0 because the stress 

status at bolt thread changed when α=αsmall was introduced. On the other hand, as shown 

in Fig.6, since there was no prevailing torque appears in the tightening process for 

α=αsmall, it has the same torque-axial force relationship with the normal specimen α=0. 

The effect of pitch difference on the fatigue life is different from the effect on tightening 

process. This is because that the fatigue damage is mainly controlled by the stress 

amplitude produced by the axial loading at the bolt threads. 

5.2 Strength Analysis  

To clarify the effect of the pitch difference on the stress at the bolt threads, the 

elastic-plastic FE analyses were performed for α=0 and α=αsmall under load F=30±14.1 

kN. The axisymmetric finite element model of bolt-nut connection is shown in Fig. 13. 

A cylindrical clamped plate was modeled with an inner diameter of 17.5 mm, outer 

diameter of 50 mm and thickness of 35 mm. The material of the bolt and clamped body 

was SCM435 and the material of the nut was S45C to match the experimental 

conditions. These stress-strain curves are indicated in Fig. 4. The bolt, nut and clamped 

body were modeled as three contact bodies. A fine mesh was created at the root of bolt 

thread with the size of 0.015mm×0.01mm, and 4-noded, axisymmetric solid, full 

integration element was used. The isotropic hardening law was assumed with von Mises 

yield criterion. Friction coefficient of 0.3 with Coulomb friction was used for the 

analysis. The clamped body was fixed in the horizontal direction, and cyclic load 

F=30±14.1 kN was applied on the bolt head as shown in Fig. 13. Then, the stress status 

under the maximum load F=30+14.1 kN and the minimum load F=30-14.1 kN was 

considered to obtain the endurance limit diagrams. Figure 14 defines the angle ψ at the 

bolt thread. In the FE analysis σψmax was the stress σψ at each thread under the maximum 
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load, and σψmin was the stress σψ at each thread under the minimum load. The stress 

amplitude and mean stress were investigated at the same angle ψ where the maximum 

stress amplitude appears, since the stress amplitude is the most important parameter for 

fatigue analysis. The mean stress σm and stress amplitude σa at each thread are defined as 

follows:  

2

max min

m

  



 ,  

2

max min

a

  



                   (3) 

The maximum stress amplitude and the mean stress at each bolt thread are plotted in 

Fig. 15 and compared with Soderberg line representing the endurance limit for plain 

specimen. Figure 15 indicates that the stress amplitude at thread No.1 for α=αsmall is 

much smaller than that of α=0 although the stress amplitudes of threads No.4 to No.8 

are much larger than those of α=0. Therefore, the cracks may appear faster at No.4 to 

No.8 for α=αsmall, but the fatigue life time is extended as shown in Fig. 10 since the 

crack propagation from threads No.8 to No.1 needs longer time.  

6 Effect of incomplete nut thread 

In the above discussion, the complete thread model of 8-thread-nuts were considered 

by FE analyses, but usually as shown in Fig. 16 (a) both ends of nuts have chamfered 

corners, which are required to make bolt inserted smoothly. This types of nuts were 

used in the fatigue experiments. Therefore, the chamfered corner was modeled first by 

an incomplete thread model A as shown in Fig. 16 (b). Figure 17 shows FE mesh for 

model A and the endurance limit diagram, when α=αsmall and σa= 100 MPa. From Fig. 

17 (b), it can be seen that the stress in thread No.8 decreases and the stress in thread 

No.6 increases. However, the stress in thread No.6 is not the most dangerous because 

thread No.8 is still in contact with a nut thread.  
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Therefore, thread model B as shown in Fig. 16 (c) is considered, where the 

incomplete nut thread does not contact bolt thread anymore due to the chamfered nut-

ends. Figure 18 (a) shows the FE mesh for model B. Figure 18 (b) (c) show the 

maximum and minimum stresses in each thread when the maximum and minimum load 

F=30±14.1 kN are applied. When α=0, the maximum stress amplitude appears at thread 

No.2. Therefore, the analytical result coincides with the experimental result in Fig. 11 

(a). When α=αsmall, the maximum stress amplitude appears at thread No.6, which is 

close to the crack location in Fig. 11 (b).    

Figure 18 (d) (e) show the endurance limit diagrams for α=0 and α=αsmall. By 

changing 8-thread-model to 6-thread-model B, the most dangerous thread for α=0 is 

changed from thread No.1 to thread No.2. For α=αsmall, thread No.6 becomes the most 

dangerous, corresponding to Fig. 11 (b). It is seen that the 6-thread-model B is useful to 

consider the chamfered nut threads at both ends in order to explain the experimental 

results. 

One may think that replicating the actual geometry of chamfered threads in Fig. 16 

(a) should be used in the FE model. However, the chamfered angle is not always the 

same. And the difference between the results for model B and the chamfered model 

with actual geometry is not very large for α＝αsmall because threads No.1 and No.8 are 

not in contact. Only the largest difference appears at thread No. 1 for α＝0 because for 

model B there are no threads in contact at No.1 thread. In this study, therefore, simple 

incomplete thread model B has been used because our main target is to analyze the 

model having pitch difference α. The results of the chamfered model for standard bolt-

nut α＝0 are indicated in appendix A.  
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7 Suitable Pitch Difference  

The main goal of this study is to find out a suitable pitch difference in order to 

improve both anti-loosening effect and fatigue life. Figure 19 shows a schematic 

illustration of the fatigue life improvement and anti-loosening improvement by varying 

the pitch difference when the results of α=0 are regarded as the reference level. On one 

hand, to improve the fatigue life, the most desirable pitch difference may be close to 

αsmall as shown in Fig. 10. On the other hand, to improve the anti-loosening 

performance, the most desirable pitch difference should be larger than αmiddle and close 

to αlarge as shown in Table 4, although the nut locking phenomenon may happen if α is 

over αverylarge. Therefore, a suitable range for α can be indicated as shown in Fig. 19. 

In this study, the bolt material SCM435 and nut material S45C are assumed. The 

stress-strain curves are indicated in Fig. 4. This design can be applied to bolt-nut 

connections made in other materials which have suitable elastic-plastic properties since 

the plastic deformation is required in order to realize the anti-loosening performance. 

8 Conclusions 

In this study, a slight pitch difference α was considered for the M16 bolt-nut 

connections. The loosening experiments as well as the fatigue experiments were 

conducted under different pitch differences. Finite element analysis was used to 

investigate the stress and deformation at the bolt threads and the fatigue strength. The 

conclusions can be summarized as follows: 

(1) Considering both the anti-loosening performance and the clamping ability, α=αmiddle 

is found to be the most desirable pitch difference. This is because the nuts did not drop 

for α=αmiddle without losing clamping ability. 

(2) The anti-loosening experiments show that the nuts did not drop for α=αlarge, but 
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clamping ability is deteriorated. FEA shows that for α=αverylarge, the large plastic 

deformation happens at threads of nut.  

(3) It is found that α=αsmall is the most desirable pitch difference to extend the fatigue 

life of the bolt-nut connection. Compared with the standard bolt-nut connection, the 

fatigue life for α=αsmall can be extended to about 1.5 times. 

(4) The 6-thread-model as shown in Fig. 18 is useful for analyzing 8-thread-nut model 

because nuts always have chamfered threads at both ends. Then, the results are in good 

agreement with the experimental results. 

(5) A suitable pitch difference to improve both anti-loosening and fatigue life can be 

illustrated as shown in Fig. 19. 

The errors and uncertainties associated with the measurements or predictions are 

always of concern in a study of this nature. In the loosening experiment, two specimens 

with the same pitch difference were tested together in order to avoid the uncertainties. 

In the fatigue experiment in Fig. 10, the S-N curves may have variations but they are 

distinct depending on the pitch difference. In the axisymmetric FE modelling may have 

some errors but previously one of the authors have compared the load distributions in 

bolt threads between the axisymmetric modelling and the three-dimensional modelling. 

Then, the relative errors between the two models are found to be less than 12% [28]. 

 

Appendix A: The results for chamfered model 

  Figure A1 shows the chamfered model replicating the actual geometry in Fig. 16 (a). 

Figure A2 shows the results of the chamfered model in comparison with the results of 

the complete thread model in Fig. 13 when α=0. It is seen that because of no contact at 

thread No.8 in the chamfered model, mean stress σm and stress amplitude σa increase 

except at thread No.1. Since the rigidity of nut thread No.1 decreases in the chamfered 
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model, the stress at bolt thread No.1 does not change very much. 
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Figure Captions List 

 

Fig. 1 Contact status between bolt and nut threads before and after loading (

contact) 

Fig. 2 Bolt-nut specimen (dimensions in mm) 

Fig. 3 Schematic illustration of bolt-nut connection having a pitch difference 

Fig. 4 Stress strain relation for SCM435 (Bolt) and S45C (Nut) 

Fig. 5 (a) Calibration method for bolt axial force measurement and (b) Calibration 

method for torque wrench 

Fig. 6 Relationship between torque and clamping force 

Fig. 7 Loosening experimental device based on NAS3350 (dimensions in mm) 

Fig. 8 Bolt axial force for the screwing process when the bolt is SCM435 and nut is 

S45C 

Fig. 9 Equivalent plastic strain when the bolt is SCM435 and nut is S45C 

Fig. 10 S-N curves for α=0, αsmall and αmiddle 

Fig. 11 Observation of crack trajectories (σa=100 MPa, F=30±14.1 kN) 

Fig. 12 Crack initiation and extension mechanism due to thread load 

Fig. 13 Axisymmetric finite element model 

Fig. 14 Local coordinate at the bolt thread 

Fig. 15 Endurance limit diagram (σa=100 MPa) 

Fig. 16 Incomplete threads at nut ends by cut away and incomplete thread models 

Fig. 17 Axisymmetric finite element mesh for model A considering incomplete thread 

and analytical result 
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Fig. 18 Axisymmetric finite element mesh for model B considering incomplete thread 

and analytical result 

Fig. 19 Schematic illustration of the fatigue life improvement and anti-loosening 

improvement 

Fig. A1 Axisymmetric finite element mesh for chamfered thread model 

Fig. A2 Comparison between the results of chamfered thread model and complete 

thread model when α=0 and σa=100 MPa 
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Before loading                          After loading 

 

(a) The nut pitch is larger than the bolt pitch 

 

 

  

Before loading                          After loading 

 

(b) The nut pitch is smaller than the bolt pitch 

  

Fig. 1 Contact status between bolt and nut threads before and after loading ( contact) 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

24 

 

 

(a) Specimen in loosening experiment  

 

 

 

(b) Specimen in fatigue experiment  

 

Fig. 2 Bolt-nut specimen (dimensions in mm) 
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(a) Contact status between bolt and nut when the nut pitch is slightly larger than the bolt pitch (δt: 

The distance where the prevailing torque appears) 

 

    

(b) Pitch difference and clearance between bolt and nut 

 

Fig. 3 Schematic illustration of bolt-nut connection having a pitch difference 
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Fig. 4 Stress strain relation for SCM435 (Bolt) and S45C (Nut) 
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(a)         (b) 

 

 

Fig. 5 (a) Calibration method for bolt axial force measurement and (b) Calibration method for torque 

wrench 
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Fig. 6 Relationship between torque and clamping force 
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   Fig. 7 Loosening experimental device based on NAS3350 (dimensions in mm) 
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(a) α=αmiddle, from Position A to Position G 

     

                                                                           

 

(b) α=αverylarge, from Position A to Position H 

 

Fig. 8 Bolt axial force for the screwing process when the bolt is SCM435 and nut is S45C 
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(a) α=αmidlle, Position G 

 

 

(b) α=αverylarge, Position H 

 

Fig. 9 Equivalent plastic strain when the bolt is SCM435 and nut is S45C 
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   Fig. 10 S-N curves for α=0, αsmall and αmiddle    
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(a) α=0                                (b) α=αsmall 

 

     

(c) α=αmiddle 

 

  Fig. 11 Observation of crack trajectories (σa=100 MPa, F=30±14.1 kN) 
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 (a) Crack initiation     (b) Crack opening and propagation    (c) New crack initiation 

 

Fig. 12 Crack initiation and extension mechanism due to thread load 
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Fig. 13 Axisymmetric finite element model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

36 

 

 

 

 

 

Fig. 14 Local coordinate at the bolt thread 
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(a) α=0      

 

 

       (b) α=αsmall 

 

 Fig. 15 Endurance limit diagram (σa=100 MPa) 
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(a) Incomplete threads at nut ends by cut away 

 

 

  (b) Incomplete thread model A 

 

 

(c) Incomplete thread model B 
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Fig. 16 Incomplete threads at nut ends by cut away and incomplete thread models 

 

                           

 

 

(a) Axisymmetric finite element mesh for model A considering incomplete thread 

 

 

 

(b) Endurance limit diagram for α=αsmall when σa=100MPa, incomplete thread model A vs. complete 

thread model  
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Fig. 17 Axisymmetric finite element mesh for model A considering incomplete thread and analytical 

result when σa=100 MPa 

 

 

(a) Axisymmetric finite element mesh for model B considering incomplete threads at both ends of 

nut 

 

 

(b) Maximum stress ψmaxσ and minimum stress ψminσ at each thread for model B when α=0 
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(c) Maximum stress ψmaxσ and minimum stress ψminσ at each thread for model B when α=αsmall 

           

 

(d) Endurance limit diagram for α=0, incomplete thread model B vs. complete thread model 
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  (b) α=αsmall 

 

(e) Endurance limit diagram for α=αsmall, incomplete thread model B vs. complete thread model 

 

Fig. 18 Axisymmetric finite element mesh for model B considering incomplete thread and analytical 

result when σa=100 MPa 
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Fig. 19 Schematic illustration of the fatigue life improvement and anti-loosening improvement 
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Fig. A1 Axisymmetric finite element mesh for chamfered thread model 
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Fig. A2 Comparison between the results of chamfered thread model and complete thread model 

when α=0 and σa=100 MPa 
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Table 1 Comparison of some special bolt-nut connections 

 

Anti-loosening 

performance 

Fatigue strength 

improvement 
Machinability Low cost 

This study 

[24, 25] 
◎ ○ ○ ○ 

CD bolt [8]  △ ○ △ △ 

Super slit nut 

[4, 5] 
○ △ × × 

Hard lock nut 

[2] 
○ △ × × 

Standard 

bolt-nut 
△ ○ ○ ◎ 

×： bad   △：fair   ○：pretty   ◎：remarkable 
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Table 2 Properties of bolt and nut material 

 
Young’s modulus 

(GPa) 

Poison’s 

ratio 

Yield strength 

(MPa) 

Tensile strength 

(MPa) 

SCM435 ( Bolt) 206 0.3 800 1200 

S45C (Nut) 206 0.3 530 980 
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Table 3 Prevailing torque, Tp, contact distance, δt, and number of threads in contact (nut), nc 

Pitch 

difference 

α 

Theoretically obtained 

δt (mm) 

The number of nut 

threads in contact 

nc 

Prevailing 

torque 

Tp (N·m) 

0 - - No 

αsmall 19.2 9.6 (＞8) No 

αmiddlel 8.8 4.4 (＜8) 25 

αlarge 7.4 3.7 (＜8) 50 

αverylarge 5.8 2.9 (＜8) Fixed 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

50 

 

 

 

 

 

 

 

 

Table 4 Anti-loosening Performance 

Pitch 

difference 

α 

Sample Nut drop 
Cycles for 

dropping 

Cycles for start 

loosening 

Prevailing 

torque 

(N·m) 

Axial 

force* 

(kN) 

0 
No.1 

Yes 

751 - 
0 24 

No.2 876 - 

αsmall 
No.3 813 - 

0 24 
No.4 1528 - 

αmiddle 
No.5 

No 

30000 21000 
30 20 

No.6 30000 30000 

αlarge 
No.7 30000 30000 67 

8 
No.8 30000 30000 57 

αverylaege No.9 - - - ＞70 - 

   (*Axial force is estimated from Fig. 6) 
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Graphical abstract  
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Highlights 

 Bolt-nut with various pitch difference are studied experimentally and analytically. 

 A suitable pitch difference can realize the anti-loosening performance. 

 A suitable pitch difference can extend the fatigue life to about 1.5 times. 

 Pitch difference affects the crack trajectories of bolt significantly. 


