29 research outputs found

    Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Membrane proteins (MPs) populate 20-30% of genomes sequenced to date and hold potential as therapeutic targets as well as for practical applications in bionanotechnology. However, MP toxicity and low yields in normally robust expression hosts such as <it>E. coli </it>has curtailed progress in our understanding of their structure and function.</p> <p>Results</p> <p>Using the seven transmembrane segments <it>H. turkmenica </it>deltarhodopsin (HtdR) as a reporter, we isolated a spontaneous mutant in the arabinose-inducible <it>P</it><sub>BAD </sub>promoter leading to improved cell growth and a twofold increase in the recovery of active HtdR at 37°C. A single transversion in a conserved region of the cyclic AMP receptor protein binding site caused the phenotype by reducing <it>htdR </it>transcript levels by 65%. When the mutant promoter was used in conjunction with a host lacking the molecular chaperone Trigger Factor (Δ<it>tig </it>cells), toxicity was further suppressed and the amount of correctly folded HtdR was 4-fold that present in the membranes of control cells. More importantly, while improved growth barely compensated for the reduction in transcription rates when another polytopic membrane protein (<it>N. pharonis </it>sensory rhodopsin II) was expressed under control of the mutant promoter in wild type cells, a 4-fold increase in productivity could be achieved in a Δ<it>tig </it>host.</p> <p>Conclusions</p> <p>Our system, which combines a downregulated version of the tightly repressed <it>P</it><sub>BAD </sub>promoter with a TF-deficient host may prove a valuable alternative to T7-based expression for the production of membrane proteins that have so far remained elusive targets.</p

    Structure of catalase determined by MicroED.

    Get PDF
    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination

    The Evolution and the Advantages of MicroED

    Get PDF
    MicroED is a method which combines cryo-EM sample preparation and instrumentation, with electron and X-ray crystallography data analysis, and it has been employed to solve many protein crystal structures at high resolution. Initially, the main doubts of this method for structure determination were the dynamic scattering of electrons, which would cause severe inaccuracies in the measured intensities. In this paper, we will review the evolution of MicroED data collection and processing, the major differences of multiple scattering effects in protein crystals and inorganic material, and the advantages of continuous rotation data collection. Additionally, because of the periodic nature of the crystalline sample, radiation doses can be kept significantly lower than those used in single particle data collection. We review the work where this was used to assess the radiation damage of a high-energy electron beam on the protein molecules at much lower dose ranges compared to imaging

    MicroED data collection and processing.

    Get PDF
    MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges

    Structural insights into the function of the catalytically active human Taspase1

    Get PDF
    19 pags., 7 figs., 2 tabs.Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage. The activation process changes the conformation of a long fragment at the C-terminus of the α subunit, for which no full-length structural information exists and whose function is poorly understood. We present a cloning strategy to generate a circularly permuted form of Taspase1 to determine the crystallographic structure of active Taspase1. We discovered that this region forms a long helix and is indispensable for the catalytic activity of Taspase1. Our study highlights the importance of this element for the enzymatic activity of Ntn-hydrolases, suggesting that it could be a potential target for the design of inhibitors with potential to be developed into anticancer therapeutics.This project has been funded in whole with Federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Chemical Biology Consortium contract no. HHSN261200800001E

    A Crystalline 1D Dynamic Covalent Polymer

    Get PDF
    The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure-property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry. The structure of the polymer has been unambiguously confirmed by microcrystal electron diffraction that together with charge transport studies and theoretical calculations show how the ?-stacked chains of the polymer generate optimal channels for charge transport

    Conformational Targeting of Fibrillar Polyglutamine Proteins in Live Cells Escalates Aggregation and Cytotoxicity

    Get PDF
    Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases

    Structure of catalase determined by MicroED.

    No full text
    corecore