108 research outputs found

    Three-way noiseless signal splitting in a parametric amplifier with quantum correlation

    Get PDF
    We demonstrate that a phase-insensitive parametric amplifier, coupled to a quantum correlated source, can be used as a quantum information tap for noiseless three-way signal splitting. We find that the output signals are amplified noiselessly in two of the three output ports while the other can more or less keep its original input size without adding noise. This scheme is able to cascade and scales up for efficient information distribution in an optical network. Furthermore, we find this scheme satisfies the criteria for a non-ideal quantum non-demolition (QND) measurement and thus can serve as a QND measurement device. With two readouts correlated to the input, we find this scheme also satisfies the criterion for sequential QND measurement

    Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation

    Get PDF
    Mode matching plays an important role in measuring the continuous variable entanglement. For the signal and idler twin beams generated by a pulse pumped fiber optical parametric amplifier (FOPA), the spatial mode matching is automatically achieved in single mode fiber, but the temporal mode property is complicated because it is highly sensitive to the dispersion and the gain of the FOPA. We study the temporal mode structure and derive the input-output relation for each temporal mode of signal and idler beams after decomposing the joint spectral function of twin beams with the singular-value decomposition method. We analyze the measurement of the quadrature-amplitude entanglement, and find mode matching between the multi-mode twin beams and the local oscillators of homodyne detection systems is crucial to achieve a high degree of entanglement. The results show that the noise contributed by the temporal modes nonorthogonal to local oscillator may be much larger than the vacuum noise, so the mode mis-match can not be accounted for by merely introducing an effective loss. Our study will be useful for developing a source of high quality continuous variable entanglement by using the FOPA

    Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs

    Get PDF
    One of the important function in optical communication system is the distribution of information encoded in an optical beam. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7+-0.1 dB and 0.84+-0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti=1.47+-0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network.Comment: 28 pages, 6 figure

    Approaching single temporal mode operation in twin beams generated by pulse pumped high gain spontaneous four wave mixing

    Get PDF
    By investigating the intensity correlation function, we study the spectral/temporal mode properties of twin beams generated by the pulse-pumped high gain spontaneous four wave mixing (SFWM) in optical fiber from both the theoretical and experimental aspects. The results show that the temporal property depends not only on the phase matching condition and the filters applied in the signal and idler fields, but also on the gain of SFWM. When the gain of SFWM is low, the spectral/temporal mode properties of the twin beams are determined by the phase matching condition and optical filtering and are usually of multi-mode nature, which leads to a value larger than 1 but distinctly smaller than 2 for the normalized intensity correlation function of individual signal/idler beam. However, when the gain of SFWM is very high, we demonstrate the normalized intensity correlation function of individual signal/idler beam approaches to 2, which is a signature of single temporal mode. This is so even if the frequencies of signal and idler fields are highly correlated so that the twin beams have multiple modes in low gain regime. We find that the reason for this behavior is the dominance of the fundamental mode over other higher order modes at high gain. Our investigation is useful for constructing high quality multi-mode squeezed and entangled states by using pulse-pumped spontaneous parametric down-conversion and SFWM

    Computationally efficient 3D analytical magnet loss prediction in surface mounted permanent magnet machines

    Get PDF
    This study proposes a computationally efficient analytical method, for accurate prediction of three-dimensional (3D) eddy current loss in the rotor magnets of surface mounted permanent magnet (SPM) machines considering slotting effect. Subdomain model incorporating stator tooth tips is employed to generate the information on radial and tangential time-derivatives of 2D magnetic field (eddy current sources) within the magnet. The distribution of the eddy current sources in 3D is established for the magnets by applying the eddy current boundary conditions and the Coulomb gauge imposed on the current vector potential. The 3D eddy current distributions in magnets are derived analytically by employing the method of variable separation and the total eddy current loss in the magnets are subsequently established. The method is validated by 3D time-stepped finite element analysis for 18-slot, 8-pole and 12-slot, 8-pole permanent magnet machines. The eddy current loss variations in the rotor magnets with axial and circumferential number of segmentations are studied. The reduction of magnet eddy current loss is investigated with respect to harmonic wavelength of the source components to suggest a suitable segmentation for the rotor magnets in SPM machines

    Long-Term Exposure to Ambient Air Pollution and Mortality Due to Cardiovascular Disease and Cerebrovascular Disease in Shenyang, China

    Get PDF
    BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10)), sulfur dioxide (SO(2)) and nitrogen dioxide (NO(2))] and mortality in Shenyang, China, using 12 years of data (1998-2009). Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3) in a year average concentration of PM(10) corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60) and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53), respectively. The corresponding figures of adjusted HR (95%CI) for a 10 µg/m(3) increase in NO(2) was 2.46 (2.31 to 2.63) for cardiovascular mortality and 2.44 (2.27 to 2.62) for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations

    Genome Analysis of Cytochrome P450s and Their Expression Profiles in Insecticide Resistant Mosquitoes, Culex quinquefasciatus

    Get PDF
    Here we report a study of the 204 P450 genes in the whole genome sequence of larvae and adult Culex quinquefasciatus mosquitoes. The expression profiles of the P450 genes were compared for susceptible (S-Lab) and resistant mosquito populations, two different field populations of mosquitoes (HAmCq and MAmCq), and field parental mosquitoes (HAmCq G0 and MAmCqG0) and their permethrin selected offspring (HAmCq G8 and MAmCqG6). While the majority of the P450 genes were expressed at a similar level between the field parental strains and their permethrin selected offspring, an up- or down-regulation feature in the P450 gene expression was observed following permethrin selection. Compared to their parental strains and the susceptible S-Lab strain, HAmCqG8 and MAmCqG6 were found to up-regulate 11 and 6% of total P450 genes in larvae and 7 and 4% in adults, respectively, while 5 and 11% were down-regulated in larvae and 4 and 2% in adults. Although the majority of these up- and down-regulated P450 genes appeared to be developmentally controlled, a few were either up- or down-regulated in both the larvae and adult stages. Interestingly, a different gene set was found to be up- or down-regulated in the HAmCqG8 and MAmCqG6 mosquito populations in response to insecticide selection. Several genes were identified as being up- or down-regulated in either the larvae or adults for both HAmCqG8 and MAmCqG6; of these, CYP6AA7 and CYP4C52v1 were up-regulated and CYP6BY3 was down-regulated across the life stages and populations of mosquitoes, suggesting a link with the permethrin selection in these mosquitoes. Taken together, the findings from this study indicate that not only are multiple P450 genes involved in insecticide resistance but up- or down-regulation of P450 genes may also be co-responsible for detoxification of insecticides, insecticide selection, and the homeostatic response of mosquitoes to changes in cellular environment
    corecore