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Abstract: By investigating the intensity correlation function, we study
the spectral/temporal mode properties of twin beams generated by the
pulse-pumped high gain spontaneous four wave mixing (SFWM) in optical
fiber from both the theoretical and experimental aspects. The results
show that the temporal property depends not only on the phase matching
condition and the filters applied in the signal and idler fields, but also on
the gain of SFWM. When the gain of SFWM is low, the spectral/temporal
mode properties of the twin beams are determined by the phase matching
condition and optical filtering and are usually of multi-mode nature, which
leads to a value larger than 1 but distinctly smaller than 2 for the normalized
intensity correlation function of individual signal/idler beam. However,
when the gain of SFWM is very high, we demonstrate the normalized
intensity correlation function of individual signal/idler beam approaches
to 2, which is a signature of single temporal mode. This is so even if the
frequencies of signal and idler fields are highly correlated so that the twin
beams have multiple modes in low gain regime. We find that the reason for
this behavior is the dominance of the fundamental mode over other higher
order modes at high gain. Our investigation is useful for constructing high
quality multi-mode squeezed and entangled states by using pulse-pumped
spontaneous parametric down-conversion and SFWM.
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1. Introduction

Pulse-pumped, single pass spontaneous parametric emission, including χ(2) nonlinearity based
spontaneous parametric down-conversion (SPDC) and χ(3) nonlinearity based spontaneous
four-wave mixing (SFWM), is one of the most popular approaches for generating the quan-
tum states of light [1–7]. Because of the broadband nature of the pulsed pump field, there does
not exist well-defined frequency correlation between the signal and the idler fields produced by
the SPDC and SFWM. So the temporal/spectral properties of the signal and idler twin beams
are quite complicated [8]. So far, the temporal properties of signal and idler twin beams gen-
erated by a pulse-pumped SPDC and SFWM in the low gain regime have been extensively
studied [9–11], because it affects the visibility of the Hong-Ou-Mandel interference between
independent sources, which plays an important role for fulfilling quantum information pro-
cessing (QIP) tasks, such as quantum teleportation, entanglement swapping, and linear optical
quantum computing etc. [12–14]. On the other hand, the pulse-pumped SPDC and SFWM in
the high gain regime can be used to generate continuous variable (CV) quantum lights, such as
multimode squeezed state and Einstein-Podolsky-Rosen (EPR) entangled state [1, 4, 5, 15, 16],
which are important resources for quantum simulation and quantum metrology [17]. It has been
understood that matching the temporal modes between the twin beams and local oscillators of
the homodyne detection system is critical for improving the quality of the multimode quantum
light [5,16]. Therefore, it is necessary to make a detailed analysis of the temporal properties of
twin beams.

Recently, there are a series of experimental investigations on the spatial and temporal prop-
erties of twin beams generated by the high gain SPDC in bulk χ(2) crystals [18–22]. However,
the results are affected by the complicated interplay of both the spatial and temporal modes
because ultrashort pump pulses are employed to achieve high gain. In this paper, we exclude
the influence of the spatial mode by exploiting single spatial mode optical fiber for the gener-
ation of the twin beams via the high gain SFWM [2, 23]. Because the individual signal/idler
beam is in thermal state, the temporal properties are related to the intensity correlation func-
tion g(2) when the response time of detectors is much longer than the pulse duration of twin
beams [8,22,24,25]. We may therefore characterize the temporal mode properties of the signal
and idler beams by measuring the g(2) under different setting of the experimental parameters.

The rest of the paper is organized as follows. In Sec. II, we theoretically analyze the temporal
property of twin beams by deducing the general expression of g(2) and numerically calculating
g(2) of individual signal/idler beam under different conditions. Our analysis is based on our
previous work [16] with the method of singular value decomposition. This approach was re-
cently employed for spatial mode analysis in high gain bulk χ(2) parametric down-conversion
processes [21, 22]. The results show that the temporal property depends not only on the phase
matching condition and the bandwidth of the filters applied in signal and idler bands, but also
on the gain of SFWM. In Sec. III, we present the experimental verification using the twin beams
generated by the pulse-pumped SFWM in a piece of dispersion shifted fiber (DSF). The results
show that the measured g(2) is in consistent with the theoretical expectation and we achieve
near single temporal mode operation in twin beams generation. Finally, we end with a brief
summary in Sec. IV.

2. Theoretical analysis

The conceptual representation of the scheme for studying the spectral properties of the signal
and idler twin beams generated from the high gain SFWM is shown in Fig. 1. The SFWM is
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Fig. 1. Conceptual representation of the scheme for generating the twin beams via SFWM
in fiber and the Hanbury Brown-Twiss (HBT) interferometer for measuring the intensity

correlation function of individual signal (idler) beam g(2)s(i). Fs(i), filter in signal (idler) band;
FC, fiber coupler; D1-D2, detector.

realized by launching pulsed pump field into a nonlinear fiber, which satisfies the required phase
matching condition. In the SFWM process, two pump photons at angular frequency ωp are
coupled via χ(3) of the nonlinear fiber to simultaneously create a pair of signal and idler photons
at frequencies ωs and ωi, respectively, with the energy conservation relation 2ωp = ωs +ωi. At
the output port of the nonlinear fiber, the filters Fs and Fi are applied to reject the pump field
and to separate the signal and idler fields. We analyze the spectral property by measuring the

normalized intensity correlation function g(2)s (g(2)i ) of individual signal (idler) field. To do
so, the filtered signal/idler field is sent into a Hanbury Brown-Twiss (HBT) interferometer,
consisting of a 50/50 fiber coupler (FC) and two detectors (D1 and D2).

The theoretical model for the SFWM process in a nonlinear fiber was described in detail
in [16] and [26]. Before evaluating the normalized correlation function, let us first present those
results that are related to the current paper.

The strong pump pulses propagating along the fiber are described by a transform limited
pulsed laser with a Gaussian shaped spectrum:

Ep(t) = E0e−iγPpz
∫

e
− (ωp−ωp0)

2

2σ2
p ei(kpz−ωpt)dωp, (1)

where σp, ωp0 and kp are the bandwidth, central frequency, and wave vector of the pump field,
respectively, and E0 is related to the peak power through the relation Pp = 2πσ2

pE2
0 . The term

e−iγPpz is originated from the self-phase modulation with γ denoting the nonlinear coefficient
of the fiber. The quantized one-dimensional negative-frequency field operators

Ê(−)
s (t) =

1√
2π

∫
dω ′

sâ
†
s (ω ′

s)e
−i(ksz−ω ′

st) (2a)

and

Ê(−)
i (t) =

1√
2π

∫
dω ′

i â
†
i (ω

′
i )e

−i(kiz−ω ′
i t) (2b)

respectively describe the inputs of signal and idler fields. The output signal (idler) field
b̂s(i)(ωs(i)) is a superposition of many amplified input signal and idler frequency modes âs(ωs)
and âi(ωi). The general input-output relationships of the operators are written as:

b̂s(ωs) = Û†âs(ωs)Û =
∫

S
h1s(ωs,ω ′

s)âs(ω ′
s)dω ′

s +
∫

I
h2s(ωs,ω ′

i )â
†
i (ω

′
i )dω ′

i (3a)

b̂i(ωi) = Û†âi(ωi)Û =
∫

I
h1i(ωi,ω ′

i )âi(ω ′
i )dω ′

i +
∫

S
h2i(ωi,ω ′

s)â
†
s (ω ′

s)dω ′
s, (3b)
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where S and I respectively represent the integration frequency range of the signal and
idler fields, and the functions h1s,h2s,h1i,h2i are referred to as Green functions. The
operators of the input and output signal (idler) fields satisfy the commutation rela-
tion [âs(i)(ω ′

s(i)1), â
†
s(i)(ω

′
s(i)2)] = δ (ω ′

s(i)1 −ω ′
s(i)2) and [b̂s(i)(ωs(i)1), b̂

†
s(i)(ωs(i)2)] = δ (ωs(i)1 −

ωs(i)2), respectively. The unitary evolution operator Û is given by

Û = exp
{

G
[∫∫

F(ω ′
s,ω ′

i )â
†
s (ω ′

s)â
†
i (ω

′
i )dω ′

sdω ′
i −h.c.

]}
, (4)

where G ∝ γPpL is the gain coefficient of SFWM, and

F(ωs,ωi) =
CN

2
√

πσp
exp

[−(ωs +ωi −2ωp0)
2

4σ2
p

]
sinc

(
ΔkL

2

)
(5)

is the joint spectrum function (JSF) with CN denoting a constant to ensure the normalization
condition

∫∫ |F(ωs,ωi)|2dωsdωi = 1. Here Δk = ks + ki − 2kp + 2γPp with ks(i) denoting the
wave vector of signal (idler) field is the phase mismatching term. Using the Taylor expansion
of kp, ks, and ki at the perfect phase matching frequencies, ωp0, ωs0 and ωi0, respectively, and
balancing out the self-phase modulation term 2γPp for optimum phase matching [27–29], we
get

Δk ≈ Ωs

A
+

Ωi

B
, (6)

where A,B are determined by the dispersion coefficients of the nonlinear fiber, and Ωs(i) is
related to ωs0(i0) by Ωs(i) = ωs(i)−ωs0(i0).

The JSF is referred to as the probability amplitude of simultaneously finding a pair of signal
and idler photons within the frequency range of ωs →ωs+dωs and ωi →ωi+dωi, respectively.
According to [16], we can make a singular-value decomposition (SVD) (also known as Schmidt
decomposition [30]) of the JSF as

F(ωs,ωi) = ∑
k

rkφk(ωs)ψk(ωi)
(
k = 1,2, ...

)
, (7)

where the complex functions φk(ωs) and ψk(ωi), satisfying the orthonormal relations∫
φ ∗

k1(ωs)φk2(ωs)dωs = δk1,k2,∫
ψ∗

k1(ωi)ψk2(ωi)dωi = δk1,k2, (8)

represent the spectrum of signal and idler fields in the kth order temporal mode, and the real
eigenvalue rk ≥ 0, satisfying the normalization condition ∑k |rk|2 = 1, is referred to as the mode
amplitude. For the sake of clarity, the mode index k are arranged in a descending order, so that
the mode amplitudes satisfy rk−1 ≥ rk ≥ rk+1 · · · for k ≥ 2 . For the case of k = 1, the functions
φ1(ωs) and ψ1(ωi) are referred to as the fundamental modes.

With the SVD, the Green functions in Eq. (3) are related to φk(ωs),ψk(ωi),rk and the gain
coefficient G in a series expansion form

h1s(ωs,ω ′
s) = δ (ωs −ω ′

s)+∑
k

[cosh(rkG)−1]φk(ωs)φ ∗
k (ω

′
s) (9)

h2s(ωs,ω ′
i ) = ∑

k

sinh(rkG)φk(ωs)ψk(ω ′
i ) (10)

h1i(ωi,ω ′
i ) = δ (ωi −ω ′

i )+∑
k

[cosh(rkG)−1]ψk(ωi)ψ∗
k (ω

′
i ) (11)

h2i(ωi,ω ′
s) = ∑

k

sinh(rkG)ψk(ωi)φk(ω ′
s). (12)
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In the HBT interferometer, the operator of the signal (idler) field propagating through the
filter is expressed as

ĉs(i)(ωs(i)) =
√

ηs(i) f (ωs(i))b̂s(i)(ωs(i))+
√

1−ηs(i) f 2(ωs(i))ν̂s(i)(ωs(i)) (13)

where ηs(i) and Gaussian function f (ωs(i)) = exp[− (ωs(i)−ωs0(i0))
2

2σ2
s(i)

] with σs(i) denoting the band-

width are referred to as the transmission efficiency and spectrum of the filter Fs (Fi) in signal
(idler) band, respectively, and ν̂s(i)(ωs(i)) is the annihilation operator for the vacuum mode
added to model the loss. After passing the signal (idler) field through the 50/50 FC, the electric-
fields respectively incident on the detectors D1 and D2 are written as

E(−)
D1 (t)=

√ηD1

2
√

π

∫
dωs(i)c

†
s(i)(ωs(i))e

−i(ks(i)z−ωs(i)t)+

√
1−ηD1

2
√

π

∫
dωs(i)ν

†
s(i)(ωs(i))e

−i(ks(i)z−ωs(i)t)

(14a)

E(−)
D2 (t)=

√ηD2

2
√

π

∫
dωs(i)c

†
s(i)(ωs(i))e

−i(ks(i)z−ωs(i)t)+

√
1−ηD2

2
√

π

∫
dωs(i)ν

†
s(i)(ωs(i))e

−i(ks(i)z−ωs(i)t),

(14b)
where ηD1(2) is the quantum efficiency of D1 (D2). Accordingly, the normalized intensity cor-
relation function measured by the two detectors is written as

g(2) =

∫
dt1dt2

〈
0
∣∣E−

D1(t1)E
−
D2(t2)E

+
D2(t2)E

+
D1(t1)

∣∣0〉∫
dt1

〈
0
∣∣E−

D1(t1)E
+
D1(t1)

∣∣0〉∫ dt2
〈
0
∣∣E−

D2(t2)E
+
D2(t2)

∣∣0〉 . (15)

With the response time of each detector much longer than the creation time period of signal
and idler photons, which are confined within the pump pulse duration, the time integral can be
treated as an integral from −∞ to +∞ [25]. By substituting Eqs. (13) and (14) into Eq. (15),
g(2) of signal/idler beam can be calculated and expressed as

g(2)s(i) = 1+
Es(i)

As(i)
(16)

with

Es(i) ≡
∫

dωs(i)dω
′
s(i)dω

′
1dω

′
2| fs(i)(ωs(i))|2| fs(i)(ω

′
s(i))|2

×h∗2s(i)(ωs(i),ω
′
2)h

∗
2s(i)(ω

′
s(i),ω

′
1)h2s(i)(ω

′
s(i),ω

′
2)h2s(i)(ωs(i),ω

′
1), (17)

As(i) ≡
[∫

dωs(i)dω
′ ∣∣∣ fs(i)(ωs(i))h2s(i)(ωs(i),ω

′
)
∣∣∣2
]2

. (18)

Equations (16)-(18) show that g(2)s(i) is related to the filter function fs(i)(ωs(i)) and the Green

function h2s(i)(ωs(i),ωi(s)), but is independent upon the transmission efficiency and detection
efficiency [25, 31]. Substituting above with Eqs. (10,12) and orthonormal relations in Eq. (8),
we obtain

Es(i) = ∑
k1,k2

sinh2(rk1G)sinh2(rk2G)
∣∣Δs(i)

k1k2

∣∣2, (19)

As(i) = ∑
k1,k2

sinh2(rk1G)sinh2(rk2G)Δs(i)
k1k1

Δs(i)
k2k2

(20)

with

Δs
k1k2

≡
∫

dωs| fs(ωs)|2φ ∗
k1
(ωs)φk2(ωs),
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Δi
k1k2

≡
∫

dωs| fi(ωi)|2ψ∗
k1
(ωi)ψk2(ωi). (21)

Cauchy-Schwarz inequality gives Δs(i)
k1k1

Δs(i)
k2k2

≥ ∣∣Δs(i)
k1k2

∣∣2 so that A ≥ E ≥ 0 and 1 ≤ g(2) ≤ 2.

When there is no optical filtering, i.e., fs(ωs) = 1 = fi(ωi), we have Δs
k1k2

= Δi
k1k2

= δk1k2 and

Es(i) = ∑
k

sinh4(rkG), (22)

As(i) =

[
∑
k

sinh2(rkG)

]2

. (23)

Moreover, by defining the coefficient λk =
sinh(rkG)√

∑k sinh2(rkG)
(∑k |λk|2 = 1), which denotes the nor-

malized amplitude of the kth order mode of amplified signal and idler twin beams, Eq. (16) can
be rewritten as

g(2) = 1+∑
k

λ 4
k . (24)

The equation above was also derived by Christ et al [25] and by Sharopova et al [21] and
Dyakonov et al [22] for spatial mode analysis in high gain parametric down-conversion.

If there are M modes with nearly equal mode amplitudes: rk = r (k = 1, ...,M) or λk = λ (k =
1, ...,M), then E /A = 1/M and g(2) = 1+ 1

M . For single-mode case of r1 = 1, rk = 0(k 
= 1)
or λ1 = 1, λk = 0(k 
= 1), we always have g(2) = 2.

At low gain of G � 1, we have

g(2) ≈ 1+∑
k

r4
k . (25)

But at high gain of G � 1, we have

g(2) = 1+
1+∑k 
=1 ν2

k

[1+∑k 
=1 νk]2
(26)

with νk ≡ λ 2
k /λ 2

1 = sinh2(rkG)/sinh2(r1G) ≈ e−2(r1−rk)G ≤ e−2(r1−r2)G � 1 for G � 1/(r1 −
r2). In this case, Eq. (26) becomes

g(2) ≈ 2
(

1− ∑
k 
=1

νk

)
. (27)

Here, we dropped higher order terms in νk. So, g(2) → 2 for G � 1/(r1 − r2).
From the way that g(2) → 2 as G becomes large, we find that the contribution from the funda-

mental mode of k = 1 dominates at large G so that the generated field can be effectively consid-
ered as a single-mode field, even though the field is of multi-mode nature at low gain. Another
way to achieve single-mode operation and g(2) → 2 is optical filtering. From the expression for

E ,A in Eqs. (19) and (20) and for Δs(i)
k1k2

in Eq. (21), we find that we can narrow the bandwidth

of fs(i)(ωs(i)) so that it is much smaller than that of φk(ω),ψk(ω). Then, Δs(i)
k1k2

≈ Cs(i)∗
k1

Cs(i)
k2

(Cs
kn = φkn(0)

√∫
dωs| fs(ωs)|2, Ci

kn = ψkn(0)
√∫

dωi| fi(ωi)|2, n = 1,2), which is factorized

and leads to Δs(i)
k1k1

Δs(i)
k2k2

≈ ∣∣Δs(i)
k1k2

∣∣2 or E ≈ A and g(2) ≈ 2. In the following, we will consider

some numerical simulations to visualize how g(2) approaches to 2 as we change the gain and
the filter bandwidth.
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Fig. 2. (a) The normalized contour map of JSF |F(ωs,ωi)/F(ωs0,ωi0)| and (b) the corre-
sponding amplitude of the kth order decomposed mode rk. (c) and (d) are the spectra of the
first three decomposed modes in signal and idler fields (k = 1,2,3), respectively. The red,
blue and grey curves are for the mode with index k = 1, k = 2, and k = 3, respectively. In
the simulation, we have Δk = Ωs

0.6σpL + Ωi
0.9σpL in Eq. (5).

As an example, we analyze the normalized JSF |F(ωs,ωi)/F(ωs0,ωi0)| when the phase mis-
match term in Eq. (5) is Δk = Ωs

0.6σpL + Ωi
0.9σpL . In the calculation, all the frequency scales are

in the unit of the pump bandwidth σp. The result in Fig. 2(a) illustrates that the frequencies
of the signal and idler photon pairs generated by low gain SFWM is highly anti-correlated.
Figure 2(b) plots the corresponding amplitude of the decomposed kth order modes, φk(ωs) and
ψk(ωi). It is clear that the amplitude rk gradually decrease with the increase of mode index k,
and cannot be neglected for the case of k < 15.

Moreover, since Eqs. (16)-(18) illustrate that the spectral property of twin beams is directly
related to the Green function h2s(i)(ωs(i),ωi(s)), rather than the JSF, we then calculate the con-
tour map of normalized h2s(i)(ωs(i),ωi(s)) and the normalized amplitude of the kth order mode
λk as a function of the gain coefficient G. The calculation shows that the normalized Green func-
tions of the signal and idler beams |h2s(ωs,ωi)/h2s(ωs0,ωi0)| and |h2i(ωi,ωs)/h2i(ωi0,ωs0)|
have the same pattern. As shown in Fig. 3, in the low gain regime (G = 0.1), we have
h2s(i)(ωs(i),ωi(s)) ∝ F(ωs,ωi); with the increase of G, the corresponding amplitude of the fun-
damental mode λ1 increases. For the case of G = 20, we have λ1 → 1. The results indicate the
factorability of h2s(i)(ωs(i),ωi(s)) increase with G, and it can be written into a factorized form
h2s(i)(ωs(i),ωi(s))≈ φ(ωs)∗ψ(ωi) in the high gain limit.

Figure 4 shows the value of g(2)s(i) calculated by varying the gain coefficient and the filter
bandwidth. In the calculation, the JSF is the same as Fig. 2, and the bandwidth of the filter in
Eqs. (16)-(18) is σs(i) = Rσp in signal (idler) field with R = 1,2,3 and R → ∞ ( fs(ωs) = 1 =

fi(ωi)). One sees that for a fixed gain coefficient G, particularly in the low gain regime, g(2)s(i)
increases with the decrease of R because the average mode number decrease with the bandwidth

of thermal field; while for the fixed filter bandwidth ratio R = σs(i)/σp, g(2)s(i) increases with G

and approaches to 2 in the high gain limit. The result indicates that using criterion of g(2)s(i) → 2
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(a) G = 0.1, (b) G = 5 and (c) G = 20, respectively. In the calculation, the JSF is the same
as Fig. 2.
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Fig. 4. Intensity correlation function of individual signal and idler beams, g(2)s and g(2)i ,
versus G for filter with different ratio R = σs(i)/σp. R → ∞ is equivalent to no filter is
applied in signal (idler) band, i.e., fs(ωs) = 1 = fi(ωi). In the calculation, the JSF is the
same as Fig. 2.

to characterize the factorability of JSF is not valid unless the gain of SPDC or SFWM is low
enough [32, 33]. Additionally, we find that for the fixed parameters of gain and filter, G and R,

g(2)i is slightly higher than g(2)s . We believe this is caused by the asymmetry of JSF in Fig. 2.
Although the mode numbers of signal and idler fields are the same when no filter (R → ∞) is
applied at the output of nonlinear fiber, the frequency distribution of the kth mode for signal
field φk(ωs) is slightly narrower than that for idler field ψk(ωi), as illustrated by the spectral
function of first three decomposed modes in Figs. 2(c) and 2(d). Therefore, for the filters with
same bandwidth in signal and idler channels, the average mode number of the filtered signal
field is larger than that of the filtered idler field.
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3. Experiment

Fig. 5. Experimental setup. DSF: dispersion shift fiber; EDFA: erbium-doped fiber ampli-
fier; F1-F2: filter; FC1: 90/10 fiber coupler; FC2: 50/50 fiber coupler; FPC1-FPC3: fiber
polarization controller; PBS1-PBS2: polarization beam splitter; VOA: variable optical at-
tenuator; SPD1-SPD2: single photon detector.

Figure 5 is the experimental setup exploited to verify our theoretical analysis. High gain
SFWM is realized by pumping 300 m DSF with strong laser pulses. The 90/10 fiber coupler
(FC1) is used not only for splitting 10% of the pump as a power monitor, but also for char-
acterizing the gain of SFWM by coupling 90% of the pump and 10% of the reference signal
pulses into the DSF. The nonlinear coefficient and zero dispersion wavelength (ZDW) of the
DSF submerged in liquid nitrogen are about 2 W−1/km and 1548 nm, respectively. During the

measurement of g(2)s(i), the reference signal light is blocked.
We create the pump and reference signal pulses by taking a 36 MHz train of 100-fs pulses

centered at 1550 nm from a mode-locked fiber laser, dispersing them with a grating and then
spectrally filtering them to obtain two synchronous beams with central wavelengths of about
1549 and 1564.3 nm, respectively. This arrangement gives the nearly transform-limited pump
and reference signal with pulse duration of about 4 and 3 ps, respectively. To achieve the re-
quired pump power, the pump pulses are then amplified by an erbium-doped fiber amplifier
(EDFA), and further cleaned up with a bandpass filter F1 having central wavelength and full
width at half maximum (FWHM) of about 1549 and 0.8 nm, respectively. The polarization and
power of the pump are controlled by a fiber polarization controller (FPC1) and a fiber polar-
ization beam splitter (PBS1). Under this condition, the co-polarized SFWM with a broad gain
bandwidth is phase matched in DSF, so the reference signal centering at 1564.3 nm can be
significantly amplified by co-propagating with the pump through DSF.

The signal and idler fields co-polarized with the pump are selected by adjusting FPC2 placed
in front of PBS2. Dual-band filter F2, whose central wavelengths in the signal and idler bands
are 1564.3 and 1534 nm, respectively, is used to suppress the pump field and to separate signal
and idler fields. The pump-rejection ratio of F2, realized by cascading two coarse wavelength
division multiplexing (CWDM) filters with a wave shaper (Finisar Waveshaper 4000S), is in
excess of 120 dB. The FWHM of F2 in signal and idler bands can be adjusted by properly
setting the wave shaper.

We first characterize the high gain feature of SFWM. In the experiment, the temporal and
polarization modes of reference signal and pump are well matched by adjusting the path length
of reference signal and FPC3, respectively. A power meter is placed at the signal channel of
F2, whose bandwidth is adjusted to much broader than the reference light. When the power of
the injected reference signal is Iin = 1 μW, we measure the power of amplified signal Iout by
varying the pump power. Figure 6(a) plots the measured power gain g = Iout/Iin versus pump
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power. One sees that g = 60 is obtained for the pump with average power of about 2 mW.
To evaluate the gain coefficient G, we decompose the normalized Gaussian spectrum of the

reference signal S(ωs) =
1√√
πσsi

exp[− (ωs−ω0)
2

2σ2
s1

] in the base of signal modes:

S(ωs) = ∑
k

ξskφk(ωs). (28)

The measured power gain can be viewed as the sum of the gain of each decomposed SVD mode
nonorthogonal to the mode of the reference signal, i.e.,

g = ∑
k

|ξsk|2 cosh2(rkG), (29)

where the complex coefficient ξsk characterizes the mode matching efficiency between the ref-
erence signal and the decomposed kth order mode [16], and cosh2(rkG) is the power gain of
the kth order mode φk(ωs). According to the normalization condition ∑k |ξsk|2 = 1 and the JSF
deduced from the dispersion property of the DSF [28], we find the gain coefficient G is about
5.2 for g = 60. It should be mentioned that this is a rough estimation of the gain coefficient G
since the JSF actually depends on the pump power due to self-phase modulation and so do the
mode function φk(ωs) in Eq.(28) (see later for detail).

We then characterize the spectral property of the individual signal (idler) beam by measuring

its intensity correlation function g(2)s(i). Since the value of g(2)s(i) is independent on the transmission
and detection efficiency (see Eqs. (16)-(18)), we heavily attenuate the signal (idler) field to
single photon level by the variable optical attenuator (VOA). For the measurement fulfilled by
the HBT interferometer, the attenuated signal (idler) field is fed to the input port of 50/50 FC
(FC2), and the two outputs of FC2 are detected by single photon detectors (SPD, id200) SPD1
and SPD2, respectively. The two SPDs are operated in the gated Geiger mode. The 2.5-ns gate
pulses of SPDs arrive at a rate of about 3.6 MHz, which is 1/10 of the repetition rate of the
pump pulses, and the dead time of the gate is set to be 10 μs.

During the measurement, we record both the coincidence and accidental coincidence of two
SPDs, which are obtained by detecting signal (idler) photons originated from the same and

adjacent pump pulses, respectively. The normalized intensity correlation function g(2)s(i) is the
ratio between the measured coincidence and accidental coincidence rates. Figures 6(b) and

6(c) show the measured g(2)s and g(2)i as a function of the average pump power when the ratio

R = σs(i)/σp is 1, 2 and 3, respectively. One sees that the measured g(2)s(i) is distinctly less than
2 in the low gain regime even if the narrow band filter is applied due to the anti-frequency

correlation of the JSF in DSF [28]. However, g(2)s(i) increases with pump power for each setting
of R, and the trend is more obvious for the cases of R = 2 and R = 3. Comparing Figs. 6(b)

and 6(c), one sees that for a fixed ratio R, g(2)i is slightly larger than g(2)s , because the JSF of
the photon pairs generated in the DSF is asymmetric [28] (similar to Fig. 2(a)). Notice that the
highest value of g(2) is 1.97±0.02, indicating a near single temporal mode situation.

We note that the spontaneous Raman scattering (RS) will accompany the SFWM process in
DSF [34]. However, in our experiment, the gain of RS at the wavelength of signal and idler
beams is very low. For example, for the average pump power of about 0.45 mW, when the
detection rate of photons via SFWM is about 2.9×10−3 photons/pulse/nm, the rate of photons
via RS is only about 0.17×10−3 photons/pulse/nm. Therefore, the detected photons originated
from SFWM is at least 17 times greater than that originated from RS. Since the intensity of RS
lineally depends on pump power [34], but the intensity of photons via SFWM exponentially
depends on the peak power of pump in high gain regime (see Fig. 6(a)), the influence of RS on

the measurement of g(2)s(i) can be ignored.
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(a) (b) (c)

Fig. 6. (a) Power gain of amplified signal as a function of pump power when the power of
the seeded reference signal is about 1 μW. The intensity correlation function in (b) signal

and (c) idler bands, g(2)s and g(2)i , versus pump power for the filter F2 with different ratio
R = σs(i)/σp.

Moreover, it is worth pointing out that in DSF, the influence of higher order terms of the
dispersion and the self-phase modulation term 2γPpL on the phase matching condition in DSF
need to be considered. According to the Taylor expansion of the wave vectors at the pump
frequency ωp0, the phase mismatching term in DSF is approximated as Δk ≈ 2γPp +

β2
4 Δ2 +

β2
2 Δ(Ωs −Ωi)+

β3
8 Δ2(Ωs +Ωi), where Δ = ωs0 −ωi0 is the central frequency difference be-

tween signal and idler fields, β2 and β3 are the second and third order dispersion coefficient,
respectively [28]. Optimum phase matching condition requires 2γPp +

β2
4 Δ2 = 0. Clearly, Δk

varies with the pump power. So, we need to find out whether the increasing trend of g(2)s and g(2)i
in Fig. 6 is caused by (i) the modification of the phase matching condition or (ii) the increased
gain of SFWM.

Ωs (in the unit of σp)

(b)(a)

Fig. 7. Sketch map of the spectra of the first three decomposed modes in DSF, φk(ωs) (k =
1,2,3), for the average pump power of about (a) 0.5 mW and (b) 2 mW, respectively. The
red, blue and grey curves are for the mode with index k = 1, k = 2, and k = 3, respectively.

We experimentally estimate the term Δk and JSF in DSF by measuring the spectrum of
SFWM under different pump power. We find that under the optimized phase matching con-
dition 2γPp +

β2
4 Δ2 = 0, the frequency difference Δ = ωs0 −ωi0 changes from 5 to 7 THz when

the pump power changes from 0.5 to 2 mW. With the increase of pump power, the frequency
distribution of the kth order decomposed modes, φk(ωs) and ψk(ωi), become narrow, as illus-
trated by the first three decomposed modes φk(ωs) (k = 1,2,3) in Fig. 7. However, there is
no observable change of ∑k r4

k (the distribution of rk is similar to Fig. 2(b)) when the phase
matching condition is altered due to the self-phase modulation effect of pump. Consequently,
when the gain of SFWM and bandwidth of filter are fixed, this spectral narrowing effect of the

decomposed modes φk(ωs) (ψk(ωi)) results in a decreased value of g(2)s(i) because effective mode
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number of the measured fields will accordingly increase. Hence, the increasing trend of g(2)s(i) in
Fig. 6 is caused by the increased gain of SFWM, which is in agreement with our theoretical
analysis.

4. Summary

In summary, we have studied temporal/spectral mode property of twin beams generated by
the pulse-pumped spontaneous four wave mixing in optical fiber with the measurement of
the normalized intensity correlation function of individual signal and idler beams. Our results
show that the temporal property depends not only on the phase matching condition and the
bandwidth of filters in signal and idler fields, but also on the gain of SFWM. Under a given
phase matching condition, which determines the frequency correlation between the signal and
idler twin beams in low gain regime, the normalized intensity correlation function of individ-
ual signal/idler beam increases with the gain of SFWM, indicating that the temporal/spectral
behavior at high gain is dominated by the fundamental modes of the twin beams. With the
gain in our experiment, we achieved near single temporal mode operation as witnessed by the

measured value of g(2)i = 1.97±0.02. Our investigation is useful for improving the broadband
noise reduction of pulsed multimode quantum light and for characterizing the pulsed quantum
state [5,15,16,25,35]. Moreover, our investigation illustrates that for the application of charac-
terizing the spectral properties of photon pairs by using intensity correlation function [32, 33],
it is of great importance to ensure the operation is in the low gain regime.
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