1,340 research outputs found

    Mycotoxins in Conversation With Bacteria and Fungi

    Get PDF
    An important goal of the mycotoxin research community is to develop comprehensive strategies for mycotoxin control and detoxification. Although significant progress has been made in devising such strategies, yet, there are barriers to overcome and gaps to fill in order to design effective mycotoxin management techniques. This is in part due to a lack of understanding of why fungi produce these toxic metabolites. Here we present cumulative evidence from the literature that indicates an important ecological role for mycotoxins, with particular focus on Fusarium mycotoxins. Further, we suggest that understanding how mycotoxin levels are regulated by microbial encounters can offer novel insights for mycotoxin control in food and feed. Microbial degradation of mycotoxins provides a wealth of chemical information that can be harnessed for large-scale mycotoxin detoxification efforts

    Cultivar-Dependent Expression of a Maize Lipoxygenase Responsive to Seed Infesting Fungi

    Get PDF
    Maize kernels are highly susceptible to Aspergillus spp. infection and aflatoxin (AF) contamination. Fatty acid signaling molecules appear to mediate the plantā€“fungal interaction by affecting the growth, development, and AF production of the fungus. In particular, fatty acid derivatives of the plant lipoxygenase (LOX) pathway are implicated in the Aspergillus spp.-seed interaction. The 9(S)-hydroperoxide derivative of linoleic acid promotes transcription of AF genes, whereas the 13(S)-hydroperoxide derivative decreases AF gene expression and production; both are sporulation factors. Our goal was to identify LOX genes responsive to Aspergillus spp. colonization and determine their specificities, 9(S)- or 13(S)-. Screening maize LOX expressed sequence tags (ESTs) identified one clone, cssap 92, which is highly expressed in Aspergillus spp.-infected seed susceptible to AF contamination and repressed in lines with resistance to AF contamination. The accumulation of cssap 92 transcript was similar during Fusarium spp. infection. The cDNA clone has 94% identity to the previously described L2 LOX gene from maize. Product-specificity analysis of the CSSAP 92 protein shows that it preferentially adds oxygen to carbon 9 of linoleic acid. Because 9(S)-hydroperoxy linoleic acid has been implicated as an aflatoxin-signaling molecule, it is possible that cssap 92 could be used as a biomarker that is indicative of AF resistance in maize lines

    Cultivar-Dependent Expression of a Maize Lipoxygenase Responsive to Seed Infesting Fungi

    Get PDF
    Maize kernels are highly susceptible to Aspergillus spp. infection and aflatoxin (AF) contamination. Fatty acid signaling molecules appear to mediate the plantā€“fungal interaction by affecting the growth, development, and AF production of the fungus. In particular, fatty acid derivatives of the plant lipoxygenase (LOX) pathway are implicated in the Aspergillus spp.-seed interaction. The 9(S)-hydroperoxide derivative of linoleic acid promotes transcription of AF genes, whereas the 13(S)-hydroperoxide derivative decreases AF gene expression and production; both are sporulation factors. Our goal was to identify LOX genes responsive to Aspergillus spp. colonization and determine their specificities, 9(S)- or 13(S)-. Screening maize LOX expressed sequence tags (ESTs) identified one clone, cssap 92, which is highly expressed in Aspergillus spp.-infected seed susceptible to AF contamination and repressed in lines with resistance to AF contamination. The accumulation of cssap 92 transcript was similar during Fusarium spp. infection. The cDNA clone has 94% identity to the previously described L2 LOX gene from maize. Product-specificity analysis of the CSSAP 92 protein shows that it preferentially adds oxygen to carbon 9 of linoleic acid. Because 9(S)-hydroperoxy linoleic acid has been implicated as an aflatoxin-signaling molecule, it is possible that cssap 92 could be used as a biomarker that is indicative of AF resistance in maize lines

    Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors

    Get PDF
    Oxylipins regulate Aspergillus development and mycotoxin production and are also involved inAspergillus quorum sensing mechanisms. Despite extensive knowledge of how these oxylipins are synthesized and what processes they regulate, nothing is known about how these signals are detected and transmitted by the fungus. G protein-coupled receptors (GPCR) have been speculated to be involved as they are known oxylipin receptors in mammals, and many putative GPCRs have been identified in the Aspergilli. Here, we present evidence that oxylipins stimulate a burst in cAMP in A. nidulans, and that loss of an A. nidulans GPCR, gprD, prevents this cAMP accumulation. A. flavus undergoes an oxylipin-mediated developmental shift when grown at different densities, and this regulates spore, sclerotial and aflatoxin production. A. flavus encodes two putative GprD homologs, GprC and GprD, and we demonstrate here that they are required to transition to a high-density development state, as well as to respond to spent medium of a high-density culture. The finding of GPCRs that regulate production of survival structures (sclerotia), inoculum (spores) and aflatoxin holds promise for future development of anti-fungal therapeutics

    Genomic Mining for Aspergillus Natural Products

    Get PDF
    SummaryThe genus Aspergillus is renowned for its ability to produce a myriad of bioactive secondary metabolites. Although the propensity of biosynthetic genes to form contiguous clusters greatly facilitates assignment of putative secondary metabolite genes in the completed Aspergillus genomes, such analysis cannot predict gene expression and, ultimately, product formation. To circumvent this deficiency, we have examined Aspergillus nidulans microarrays for expressed secondary metabolite gene clusters by using the transcriptional regulator LaeA. Deletion or overexpression of laeA clearly identified numerous secondary metabolite clusters. A gene deletion in one of the clusters eliminated the production of the antitumor compound terrequinone A, a metabolite not described, from A. nidulans. In this paper, we highlight that LaeA-based genome mining helps decipher the secondary metabolome of Aspergilli and provides an unparalleled view to assess secondary metabolism gene regulation

    Loss of the mammalian G-protein coupled receptor, G2A, modulates severity of invasive pulmonary aspergillosis

    Get PDF
    BackgroundAspergillus fumigatus is a well-known opportunistic pathogen that causes a range of diseases including the often-fatal disease, invasive pulmonary aspergillosis (IPA), in immunocompromised populations. The severity of IPA is dependent on both host- and pathogen-derived signaling molecules that mediate host immunity and fungal growth. Oxylipins are bioactive oxygenated fatty acids known to influence host immune response and Aspergillus developmental programs. Aspergillus synthesizes 8-HODE and 5,8-diHODE that have structural similarities to 9-HODE and 13-HODE, which are known ligands of the host G-protein-coupled receptor G2A (GPR132).Materials and methodsOxylipins were extracted from infected lung tissue to assess fungal oxylipin production and the Pathhunter Ī²-arrestin assay was used to assess agonist and antagonist activity by fungal oxylipins on G2A. An immunocompetent model of A. fumigatus infection was used to assess changes in survival and immune responses for G2A-/- mice.ResultsHere we report that Aspergillus oxylipins are produced in lung tissue of infected mice and in vitro ligand assays suggest 8-HODE is a G2A agonist and 5,8-diHODE is a partial antagonist. To address the hypothesis that G2A could be involved in the progression of IPA, we assessed the response of G2A-/- mice to A. fumigatus infection. G2A-/- mice showed a survival advantage over wild-type mice; this was accompanied by increased recruitment of G2A-/- neutrophils and increased levels of inflammatory markers in A. fumigatus-infected lungs.ConclusionsWe conclude that G2A suppresses host inflammatory responses to Aspergillus fumigatus although it remains unclear if fungal oxylipins are involved in G2A activities

    Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production

    Get PDF
    This is the peer reviewed version of the following article: Soukup, A. A., Chiang, Y.-M., Bok, J. W., Reyes-Dominguez, Y., Oakley, B. R., Wang, C. C. C., Strauss, J. and Keller, N. P. (2012), Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Molecular Microbiology, 86: 314ā€“330. doi:10.1111/j.1365-2958.2012.08195.x, which has been published in final form at http://doi.org/10.1111/j.1365-2958.2012.08195.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Regulation of secondary metabolite (SM) gene clusters in Aspergillus nidulans has been shown to occur through cluster specific transcription factors or through global regulators of chromatin structure such as histone methyltransferases, histone deacetylases, or the putative methyltransferase LaeA. A multi-copy suppressor screen for genes capable of returning SM production to the SM deficient Ī”laeA mutant resulted in identification of the essential histone acetyltransferase EsaA, able to complement an esa1 deletion in Saccharomyces cereviseae. Here we report that EsaA plays a novel role in SM cluster activation through histone 4 lysine 12 (H4K12) acetylation in four examined SM gene clusters (sterigmatocystin, penicillin, terrequinone, and orsellinic acid), in contrast to no increase in H4K12 acetylation of the housekeeping tubA promoter. This augmented SM cluster acetylation requires LaeA for full effect and correlates with both increased transcript levels and metabolite production relative to wild type. H4K12 levels may thus represent a unique indicator of relative production potential, notably of SMs

    Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA

    Get PDF
    Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, Ī”laeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent Ī”laeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, Ī”laeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatusā€“specific mycotoxin clusters, were expressed at significantly lower levels in the Ī”laeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus) but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs), polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE) was greatly reduced in the Ī”laeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity
    • ā€¦
    corecore