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Summary

The genus Aspergillus is renowned for its ability to

produce a myriad of bioactive secondary metabolites.
Although the propensity of biosynthetic genes to form

contiguous clusters greatly facilitates assignment of
putative secondary metabolite genes in the completed

Aspergillus genomes, such analysis cannot predict
gene expression and, ultimately, product formation.

To circumvent this deficiency, we have examined

Aspergillus nidulans microarrays for expressed sec-
ondary metabolite gene clusters by using the tran-

scriptional regulator LaeA. Deletion or overexpression
of laeA clearly identified numerous secondary metab-

olite clusters. A gene deletion in one of the clusters
eliminated the production of the antitumor compound

terrequinone A, a metabolite not described, from
A. nidulans. In this paper, we highlight that LaeA-

based genome mining helps decipher the secondary
metabolome of Aspergilli and provides an unparal-

leled view to assess secondary metabolism gene reg-
ulation.

Introduction

Filamentous fungi display many unique characteristics
that render them of great interest to the research com-
munity. Among these characteristics is the biosynthesis
of natural products that display a broad range of useful
activities for pharmaceutical and agricultural purposes,
e.g., antibiotic, immunosuppressant, lipid-lowering, or
antifungal properties [1–3]. Less desired are the potent
phyto- and mycotoxic activities exhibited by fungal path-
ogens [4, 5]. These bioactivities of natural products have
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spurred efforts toward identifying genes involved in their
biosynthesis. Accumulating data from studies of known
secondary metabolite biosynthetic genes dispelled an
original premise that fungal metabolic genes would be
scattered throughout the genome; rather, the hallmark
of secondary metabolite genes—in contrast to genes in-
volved in primary metabolism—is that they are clustered
in fungal genomes [6]. Examples of secondary metabo-
lite gene clusters include those synthesizing pharma-
ceuticals of clinical use, such as the important b-lactam
antibiotics penicillin (PN) and cephalosporin [7], the anti-
hypercholesterolaemic agent lovastatin [8], the ergo-
peptines with their important pharmacophore D-lysergic
acid amide [9], as well as carcinogenic toxins (aflatoxin
and sterigmatocystin, ST) [4].

Discovery of the first fungal gene clusters was largely
a result of mutant hunts, followed by complementation
with gene transformation. More sophisticated identifica-
tion techniques arose when it was realized that many of
the structural genes involved in secondary metabolism
are highly conserved and could be cloned by hybridiza-
tion probing or amplified from the fungal genome by use
of degenerate primers; the latter technique was espe-
cially fruitful in procuring polyketide synthases [10, 11].
This conservation of DNA and protein sequences,
coupled with the cluster motif of metabolic pathways,
greatly facilitated the assignment of putative secondary
metabolite genes in the completed Aspergillus genomes
(Broad Institute, Sanger Centre, and TIGR). Sequence
alignments suggest that A. nidulans has the potential
to generate up to 27 polyketides, 14 nonribosomal pep-
tides, 1 terpene, and 2 indole alkaloids; similar predic-
tions can be made from the A. fumigatus and A. oryzae
genomes. Interestingly, there appears to be almost no
orthologs among these genes across the three species,
thus representing a loss of synteny to a degree not seen
in other regions of the genomes. This high number of pu-
tative metabolites is greater than the known metabolites
ascribed to these species, and it may be a reflection of
incomplete natural product analysis in these species
or failure of many clusters to be expressed, at least
under the culture conditions commonly used in labora-
tories. For example, the aflatoxin gene cluster is not
transcribed in A. oryzae [6, 12].

An intimation of a method to identify transcriptionally
active clusters arose from the discovery of LaeA, a nu-
clear protein regulating secondary metabolite produc-
tion in Aspergillus spp. [13]. Loss of LaeA silenced ST
and PN production in A. nidulans and gliotoxin produc-
tion in A. fumigatus, whereas overexpression of the
gene increased PN and lovastatin production in A. nidu-
lans and A. terreus, thus leading to the hypothesis that
LaeA was involved in global regulation of secondary me-
tabolite gene clusters in this genus. This differs from the
Streptomyces transcriptional regulator AfsR, which is
either species or pathway specific [14, 15]. Given the
transcriptional nature of regulation by LaeA, we consid-
ered this protein to be a promising gateway toward de-
signing a novel procedure to identify fungal natural
products. Our prediction, realized here, was that any

https://core.ac.uk/display/82531407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:npk@plantpath.wisc.edu


Chemistry & Biology
32
transcribed secondary metabolite cluster in Aspergillus
would be revealed by profiling laeA deletion (DlaeA) and
overexpression (OE::laeA) mutants. Profiling allows for
the identification of transcriptionally active clusters,
targeted manipulation, and, ultimately, chemical char-
acterization of novel natural products. As proof of prin-
ciple, we present here the LaeA-based identification of
the terrequinone biosynthetic gene cluster in the Asper-
gillus nidulans genome, an antitumor compound previ-
ously unknown from this species.

Results and Discussion

Two of the best-characterized fungal secondary metab-
olite gene clusters are the A. nidulans ST and PN clus-
ters. Prior gene expression data of the A. nidulans DlaeA
strain compared to wild-type showed that selected
genes in the ST and PN gene clusters were downregu-
lated in the mutant [13]. To examine the nature and ex-
tent of ST and PN gene cluster regulation by LaeA, we
analyzed a full genome array for ST and PN gene expres-
sion. Figure 1 illustrates the log ratios comparing ex-
pression of genes (DlaeA versus wild-type) of the ST
and PN gene clusters. The pattern produced is what
we term the ‘‘secondary metabolite cluster signature,’’
in which individual genes or even virtually every gene
in the particular cluster is downregulated in the DlaeA
strain, in contrast to the undisturbed expression of adja-
cent genes. To validate these results, we assessed
a transcriptional profile of the entire 60 kb ST gene clus-
ter by Northern analysis (data not shown). The profile
was remarkably similar to that of the array and con-
firmed that LaeA regulation impacts the cluster region,
but not neighboring genes.

Considering the clear presentation of the secondary
metabolism motif for the PN and ST clusters, we then ex-
amined the array data for areas of near-contiguous gene
suppression in the DlaeA strain or near-contiguous gene
induction in the OE::laeA strain. Open reading frames
found in regions displaying this motif were then exam-
ined for the potential to encode secondary metabolite
biosynthetic enzymes. Using these criteria, we identified
several putative secondary metabolite cluster signa-
tures; one of these signatures is illustrated from both
the DlaeA and OE::laeA comparisons to wild-type (Fig-
ure 2). At times, data from OE::laeA and DlaeA compar-
isons to wild-type were even supportive for both posi-
tive and negative regulation, respectively, of the same
cluster (one example is shown in Figure S1; see the Sup-
plemental Data available with this article online).

Among the biosynthetic loci identified by the laeA-
based genome mining approach for natural product
biosynthetic capabilities, one particular locus whose
secondary metabolite cluster signature is shown in Fig-
ure 2A attracted our attention. It comprises five open
reading frames, transcriptionally regulated by LaeA (Fig-
ure 3A), two of which are similar to genes encoding
transferases acting on tryptophan-derived structures
(tdiB, dimethylallyl-L-tryptophan synthase, and tdiD,
L-kynurenine aminotransferase, respectively), thus be-
ing suggestive of indole alkaloid biosynthetic abilities.
Other reading frames encode for one hypothetical fun-
gal protein (tdiE), one dehydrogenase/oxidoreductase
(tdiC), and a monomodular nonribosomal peptide syn-
thetase (NRPS, tdiA). Interestingly, the deduced TdiA
enzyme significantly deviates from the canonical NRPS
architecture [16, 17], as it merely comprises an adenyla-
tion domain and a peptidyl carrier domain, but lacks
a condensation domain to form a peptide bond. How-
ever, it includes a thioesterase domain that releases
the completed peptide from the enzyme, which is typi-
cally a bacterial NRPS feature [18]. The highest similarity
across the entire deduced amino acid sequence was
found to putative NRPSs of bacterial origin (Ralstonia
solanacearum and Burkholderia pseudomallei, ENTREZ
accession numbers NP_522978 and YP_110151, re-
spectively). These findings suggest either an enzyme
acting in trans on a second condensing NRPS encoded
outside the cluster, a solely adenylating (i.e., activating)
enzyme, or a nonfunctional pseudogene, perhaps as
a remnant of an ancient horizontal gene transfer.

To determine if the cluster produced a bona fide sec-
ondary metabolite, we inactivated the second gene in
the cluster, tdiB. tdiB shows similarity to Claviceps fusi-
formis dmaW, a gene encoding dimethylallyl-L-trypto-
phan synthase [19], and other fungal L-tryptophan dime-
thylallyltransferases, catalyzing the first committed step
in the ergot alkaloid pathway. Similar to other secondary
metabolite genes [13], tdiB is not only repressed in the
DlaeA mutant, but it is also upregulated in a laeA over-
expression background (Figure 3B). Disruption of tdiB
resulted in a mutant (TJW65.7) unable to produce a
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Figure 1. Genome Mining Identifies Previously Identified Gene

Clusters of the LaeA Regulon

(A) Sterigmatocystin (ST) gene cluster. Shown are expression ratios

(DlaeA to wild-type) for genes on Chromosome IV in the region in-

cluding the ST cluster (AN7800.2–AN7830.2). Asterisks indicate the

first (AN7804.2, stcW) and last (AN7825.2, stcA) genes of the clus-

ter, relative to the genome sequence annotation.

(B) Penicillin (PN) gene cluster. Shown are expression ratios (DlaeA

to wild-type) for genes on Chromosome II in the region including

the PN cluster (AN2616.2–AN2627.2). PN genes acvA, ipnA, and

aatA are indicated (A–C, respectively).
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compound that appears yellow-orange on TLC under UV
light (Figure 4A). HPLC-UV/Vis and LC/MS analyses with
extracts of the TJW65.7 mutant and wild-type identified
ST as a known compound from A. nidulans in both sam-
ples (Figure 4B). However, the DtdiB sample was lacking
a second major substance (Figure 4C). This compound
was purified from the wild-type and was assigned a
molecular mass of m/z = 490 (m/z = 489 [M 2 H+] and
491 [M + H+]). Full one- and two-dimensional NMR ana-
lyses (see Table S1 for details) identified the compound
as terrequinone A (Figure 4D), a fungal bisindolyl-
quinone with inhibitory properties on tumor cell lines
[20], which was not known to be produced by Aspergil-
lus nidulans.

Although feeding experiments have led to proposed
biosynthetic routes for this class of compounds [21],
gene clusters have not been identified for these metab-
olites. Matching the chemical structure of terrequinone
A to the tdi cluster explains the absence of a condensa-
tion domain within the TdiA enzyme, as no amide bond
has to be closed, and implicates a speculative, yet plau-
sible, order for the key biosynthetic events: (1) deamina-
tion of L-tryptophan to indolepyruvic acid by the trans-
aminase TdiD; (2) activation to AMP-indolepyruvic acid
by TdiA (adenylation domain), whose nonribosomal
code points to an arylic acid rather than to amino acid-
activating function [22]; (3) dimerization of two activated
indolepyruvic acid monomers to the core quinone struc-
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Figure 2. LaeA-Controlled Gene Clusters Identified by Genome

Mining

(A) Putative indole alkaloid biosynthetic pathway. Shown are expres-

sion ratios (DlaeA to wild-type) for genes AN8513.2–AN8526.2.

Genes belonging to the cluster (confirmed by Northern analysis,

see text) putatively encode: (A) an NRPS possessing a peptidyl car-

rier protein, an adenylating domain, and a thioesterase domain, (B)

tryptophan dimethylallyltransferase, (C) an dehydrogenase/oxidore-

ductase, (D) a homolog of kynurenine aminotransferase, and (E) a

hypothetical protein. Genes C–E are duplicated in the annotated

genome sequence (indicated as C0–E0), but this duplication does

not exist in the fungal genome, as assessed by PCR.

(B) Putative hybrid secondary metabolite pathway. Shown are

expression ratios (OE::laeA to wild-type) for genes AN1588.2–

AN1602.2. Genes putatively belonging to the cluster include those

encoding: (A–C) hypothetical proteins, (D) a putative ATPase family

protein, (E) a polyprenyl synthase, (F) a hydroxylmethylglutaryl-coA

reductase homolog (e2120), (G) an ent-copalyl diphosphate/ent-

kaurene synthase homolog (e2168), (H) a translation elongation fac-

tor, (I) an oxidoreductase, (J) a hypothetical protein, (K) a P450 mono-

oxygenase, (L) a Zn2-Cys6 transcription factor, (M) a hypothetical

protein, (N) a cytochrome P450, and (O) a hypothetical protein.
ture, which might be accomplished by the TdiA thioes-
terase domain, analogous to the cyclization activity of
the tyrocidine thioesterase domain [23]; and, finally, (4)
the possibility of oxidoreductase TdiC playing a role in
reducing the keto groups of the quinone core, perhaps
to prepare it for the prenyl transfer (a biosynthetic path-
way is presented in Figure 5). Yet, the full metabolic
pathway (e.g., at which time the two tailoring prenyl
transfer reactions occur) remains elusive and will be
subject to our further genetic and biochemical investiga-
tions.

These results from our laeA-based genome mining
expedition reveal a novel, to our knowledge, genomic
method to identify expressed clusters. This knowledge
fills a large gap in existing technology in identifying nat-
ural products. Not only does LaeA identify actively syn-
thesized metabolites—even an unknown compound for
a given species, as demonstrated in our case—but it can
do so without any structural/chemical or DNA data, re-
quirements of traditional, e.g., PCR-based genome min-
ing approaches. LaeA also shows no restrictions in the
chemical class of metabolite that it regulates; be it poly-
ketide, peptide, terpene, etc., the single requirement
seems to be arrangement of the biosynthetic genes in
a cluster [13]. This latter point is particularly promising,
as the potential wealth of Aspergillus bioactive metabo-
lites is enormous. Additionally, examination of several
other Ascomycetes indicates a similarity in PKS number
to the Aspergilli [24], thus revealing a fungal secondary
metabolite capability as rich, if not richer, than evident
from the two published Streptomyces genome projects
[25, 26]. Putative laeA homologs exist in numerous fila-
mentous ascomycetes genera, e.g., Magnaporthe, Coc-
cidioides, and Fusarium [13]. Assuming functionality of
these homologs in these and other genera, placement
of the A. nidulans overexpression allele could be envi-
sioned as a generic tool reaching beyond the genus
Aspergillus to upregulate metabolite production in fila-
mentous fungi.

Although presented as a potent mining tool in this doc-
ument, it is possible that the most exciting impact of
LaeA lies in deciphering the mechanism of cluster regu-
lation and relating this mode of regulation to the ecology
of the organism. Data to support models for formation,
maintenance, and regulation of fungal gene clusters
have been scanty [6]; an understanding of LaeA function
may help resolve some of these hypotheses.

Significance

Completed fungal genome projects provide much in-

sight into the potential metabolic capabilities and
therefore accelerate the search for new natural prod-

ucts—be it for drug lead discovery or to help assess
the risk in terms of mycotoxin production. As the num-

ber of natural product gene clusters far exceeds the
number of secondary metabolites characterized from

a given species, a tool is needed to identify actively
transcribed gene clusters whose metabolic products

may not be obvious. In this report, we describe the
Aspergillus transcriptional regulator LaeA as this

sought-after tool. As a proof of principle, we report
the identification of the terrequinone A biosynthetic
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Figure 3. The tdi Gene Cluster

(A) Demarcation of the tdi gene cluster. DNA fragments covering the six putative tdi cluster genes (probes II and III) were expressed in wild-

type, but not the DlaeA mutant. DNA fragments adjacent to the proposed cluster (probes I and IV) were expressed in both wild-type and the

DlaeA mutant.

(B) tdiB is not expressed in a DlaeA mutant or a DtdiB mutant, but it is upregulated in the OE::laeA mutant.
gene cluster and predict a possible biosynthetic path-

way. To our knowledge, this metabolite was unknown

from A. nidulans, and no cluster for this entire class of
compound had been reported before. In turn, the clus-

ter could not be assigned to any known compound
from Aspergillus nidulans before, and homologies to

known natural product genes—both from streptomy-
cetes and filamentous fungi—did not support a reliable

prediction of a chemical structure. Cumulatively, the
advance of our approach is that it only requires tran-

scriptional analysis of Aspergillus and works even if
a compound is unknown from a given species or if

structural information is unavailable. Moreover, it is
not limited to a particular chemical class of metabo-

lites. As it works in other Aspergillus species as well,
LaeA may (1) serve to explore the complete secondary

metabolome of the entire genus and, (2) from the ap-
plied point of view, help develop robust producer

strains, as LaeA overexpression promotes secondary
metabolite production.

Experimental Procedures

Fungal Strains and Growth Conditions

Table S2 lists all fungal strains used in this study. All strains were

maintained as glycerol stocks and were grown at 37ºC on glucose

minimal medium (GMM), threonine minimal medium (TMM), or lac-

tose minimal medium (LMM) [13, 27] amended with 30 mM cyclopen-

tanone. Cyclopentanone induces alcA(p), which was used to pro-

mote laeA expression in an overexpression (OE::laeA) strain. All

media contained appropriate supplements to maintain auxotrophs

[28].

Nucleic Acid Analysis

DNA extractions from fungal and bacterial strains, restriction

enzyme digestion, gel electrophoresis, blotting, hybridization, and

probe preparation were performed according to standard methods

[27, 29]. Total RNA was isolated from lyophilized mycelia by using

Trizol reagent (Invitrogen, Carlsbad, CA) according to the manufac-

turer’s instructions. RNA blots were hybridized with a 1 kb tdiB PCR
product by primers NAIf1 and NAIr1 for the expression of tdiB. The

tdi gene cluster boundary was determined by hybridizing a 6 kb

PCR product (probe I by primers NCf3 and NCr3), a 4 kb PCR prod-

uct (probe II by primers NCf4 and NCr4), a 4 kb PCR product (probe

III by primers NCf5 and NCr5), and a 3 kb PCR product (probe IV by

primers NCf6 and NCr6) to total RNA extracted from wild-type and

DlaeA. Primers are listed in Table S3.

Disruption of the tdiB Gene

PCR technique was applied to create a tdiA disruption cassette in

which the tdiB open reading frame was replaced with the A. parasit-

icus pyrG selection marker. The disruption cassette was con-

structed by ligating a 1.1 kb DNA fragment upstream of the tdiB start

codon (primers NcAf1 and NcAr1, the latter with an EcoRI site) and

a 1.1 kb DNA fragment downstream of the tdiB stop codon (primers

NcAf2 and NcAr2, the latter with a HindIII site) to the EcoRI and

HindIII side of the A. parasiticus pyrG marker gene, respectively, ob-

tained from pBZ5 [30]. A total of 3 ml of the ligation mixture was

used to amplify the resultant 5 kb disruption cassette by using the

Triple master PCR kit (Eppendorf, Westbury, NY). A total of 20 ml

of the PCR product was purified with a G-50 column (Pharmacia)

and was then used for the disruption of the tdiB gene. Primers are

listed in Table S3. PfuUltra (Stratagene) was used for the PCR reac-

tions of the 50 and 30 flanking regions of the cassette. Strain RLMH37

was transformed by the PCR fragment. Fungal transformation es-

sentially followed the method described by Shimizu and Keller [27],

with the modification of embedding the protoplasts in top agar

(0.75%) rather than spreading them by a glass rod on solid media.

Five out of 27 transformants were confirmed by Southern hybridiza-

tion to contain a tdiB gene replacement (data not shown). One of the

disruptants, TJW65.7, was used for subsequent experiments.

Microarray Analysis

Arrays were generated by Nimblegen, Inc. (Madison, WI) for each an-

notated gene in the A. nidulans genome database (Broad Institute).

Each gene was represented by 10 oligonucleotide probe pairs (24

bases each) consisting of a ‘‘perfect match’’ probe identical to a ge-

nomic sequence and a ‘‘mismatch probe’’ designed to differ at two

positions relative to the perfect match probe. Total RNA of wild-

type and DlaeA strains was prepared in duplicate from FGSC 26

(biA1; veA1) and RJW40.7 (biA1; methG1; DlaeA::metG;veA1) grown

for 48 hr in GMM by using TRIzol reagent (Invitrogen, Carlsbad, CA),

followed by RNeasy clean up (Qiagen Inc., Valencia, CA). Total RNA

of wild-type and OE::laeA strains was prepared in triplicate from



LaeA-Based Genomic Mining of Aspergillus nidulans
35
Figure 4. Lack of Metabolite Production in the DtdiB Mutant

(A) Chloroform extracts from wild-type and the DtdiA mutant run on a thin layer chromatography plate in a hexane:ethyl acetate (4:1) solvent

system. The arrow points at the Rf of the missing metabolite in the DtdiA mutant.

(B) Chloroform extracts from wild-type (upper panel) and the DtdiB mutant (lower panel) analyzed by HPLC. For wild-type, the two major peaks

are ST, eluting after 20.9 min, and terrequinone A, eluting after 24.6 min. The chromatograms were recorded at 254 nm; the vertical axis shows

milliabsorption units (mAU).

(C) Mass spectroscopy in the positive (upper panel) and negative mode (lower panel). The mass spectrum of the HPLC peak at 24.6 min was

extracted; signal intensities are given as relative abundance with the 491.2 signal set as 100%. Peak 491.2 corresponds to the protonated

molecule, and peak 489.2 corresponds to the deprotonated molecule.

(D) The chemical structure of terrequinone A.
FGSC 26 (biA1; veA1) and RJW44.2 (biA1; methG1; alcA(p)::laeA::

trpC, veA1; DlaeA::methG) grown for 24 hr in LMM with 30 mM cyclo-

pentanone (ICN Biochemicals INC, Aurora, OH) after 24 hr in GMM

by using TRIzol reagent (Invitrogen, Carlsbad, CA), followed by

RNeasy clean up (Qiagen Inc., Valencia, CA). Total RNA was spiked

with control RNA transcripts, converted to biotinylated cRNA, and

fragmented by following the Affymetrix Expression Analysis Techni-
cal Manual. Hybridization mixtures were prepared according to the

array manufacturer’s standard protocol by using 10 mg biotinylated

cRNA, and they were incubated with the arrays overnight at 45ºC.

Chips were washed, stained with streptavidin-linked Cy3 dye, and

dried according to the manufacturer’s protocol. Chips were scanned

by using a GenePix scanner (Axon Instruments, Union City, CA). The

data were imported into a Microsoft Access database, and mismatch
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Hypothetical order of the key steps: deami-

nation (TdiD), adenylation and dimerization

(TdiA, Ad = adenylation domain, TE = thio-

esterase/cyclase domain), and reduction

(TdiC). Prenyl transfers might occur sepa-

rately and at earlier points in the biosynthetic

route.
probe signals were subtracted from perfect match signals and aver-

aged across genes. These average signal values were normalized by

multiplying every signal value by a scaling factor calculated as 1000

signal units divided by the average signal for the RNA spike controls.

For the purpose of calculating ratios, a value of 5 signal units was

substituted for genes with negative signal values (where mismatch

probe signals exceeded perfect match signals). Genes dependent

on LaeA for expression were determined by using EBarrays software

[31, 32] to identify genes with statistically different signals between

mutant and wild-type (DlaeA mutant strain to wild-type or OE::laeA

to wild-type). Once LaeA-regulated genes had been identified, they

were assigned gene identification numbers according to Broad Insti-

tute nomenclature for Aspergillus nidulans to verify clustered locali-

zation by using the publicly accessible genomic sequence (at http://

www.broad.mit.edu/annotation/fungi/aspergillus/). Next, BLAST

searches (through the Broad Institute) were carried out to check for

known homologous genes in other organisms.

Chemical Analysis of the DtdiB Mutant

The A. nidulans TJW65.7 and A. nidulans wild-type were grown in

100 ml liquid GMM. The cultures were fermented at 37ºC and

200 rpm for 3 days. Upon harvest, the fermentation broth was centri-

fuged (10 min, 2,700 3 g). The mycelium was extracted with 30 ml

chloroform. The supernatant was extracted separately with an equal

volume of chloroform. The organic layers were evaporated in vacuo,

then redissolved in 300 ml methanol and subjected to High Perfor-

mance Liquid Chromatography (HPLC). Because no differences

were found, both extracts were pooled (for preparative purposes,

a 4 liter fermentation was used, the solvent volumes were scaled

up accordingly, and the broth was extracted twice). Analytical

HPLC was performed on a Waters liquid chromatograph with an

Xterra MS C-18 column (100 3 4.6 mm) and a C-18 guard column,

maintained at 35ºC: detection at 254 nm (diode array acquisition:

220–500 nm). Solvent A: 0.5% (v/v) acetic acid in H2O; solvent B:

0.5% (v/v) acetic acid in acetonitrile, flow rate: 0.5 ml min21. The gra-

dient was: initial hold for 3 min at 20% B, then, within 23 min, at 95%

B. Liquid chromatography-Mass Spectroscopy (LC/MS) in analytical

and preparative scale was performed on an Agilent 1100 integrated

system equipped with a Zorbax Eclipse XDB C-8 column (150 3 4.6

mm, 5 mm particle size) and C-8 guard column, essentially applying

the conditions described for HPLC, using atmospheric pressure

chemical ionization (APCI), and switching between positive and neg-

ative mode. For preparative HPLC, a Zorbax SB C-18 column (150 3

9.4 mm) and a C-18 guard column were used; flow rate was 3.5 ml

min21. Thin layer chromatography was carried out on silica gel 60

plates with hexane:ethyl acetate (4:1, v/v) as the mobile phase. For

NMR experiments, the pure compound was dissolved in acetone-d6.

Supplemental Data

Supplemental Data including tables of fungal strains, primers, and

NMR data and a figure of an LaeA-regulated gene cluster are avail-

able at http://www.chembiol.com/cgi/content/full/13/1/31/DC1/.
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