169 research outputs found

    Myc and Mammary Cancer: Myc is a Downstream Effector of the ErbB2 Receptor Tyrosine Kinase

    Get PDF
    The proto-oncogene c-myc encodes a transcription factor which plays a major role in the regulation of normal cellular proliferation and is aberrantly expressed in many breast tumors. In a normal cell Myc expression levels are tightly regulated being subject to many layers of control. Errantly expressed Myc collaborates with other oncogenes to promote transformation. In this review we will focus on the association between abnormal Myc expression and mammary cancer. In particular, we will discuss the role of Myc as a downstream effector of the ErbB2 receptor tyrosine kinase which is overexpressed and constitutively activate in many mammary tumors. The cooperation between Myc and ErbB2 in transformation will be discussed in relation to clinical studies on Myc in human cancer and with consideration of transgenic models of Myc-induced mammary cancer. Data from our laboratory will be presented showing that deregulated ErbB2 activity strongly stimulates cytoplasmic signaling pathways which in turn impinge on Myc at multiple levels causing its deregulated expressio

    Myc and Mammary Cancer: Myc is a Downstream Effector of the ErbB2 Receptor Tyrosine Kinase

    Get PDF
    The proto-oncogene c-myc encodes a transcription factor which plays a major role in the regulation of normal cellular proliferation and is aberrantly expressed in many breast tumors. In a normal cell Myc expression levels are tightly regulated being subject to many layers of control. Errantly expressed Myc collaborates with other oncogenes to promote transformation. In this review we will focus on the association between abnormal Myc expression and mammary cancer. In particular, we will discuss the role of Myc as a downstream effector of the ErbB2 receptor tyrosine kinase which is overexpressed and constitutively activate in many mammary tumors. The cooperation between Myc and ErbB2 in transformation will be discussed in relation to clinical studies on Myc in human cancer and with consideration of transgenic models of Myc-induced mammary cancer. Data from our laboratory will be presented showing that deregulated ErbB2 activity strongly stimulates cytoplasmic signaling pathways which in turn impinge on Myc at multiple levels causing its deregulated expressio

    The mTOR Pathway in Breast Cancer

    Get PDF
    There is currently a wealth of information regarding the mutations that contribute to cancer development. Most of these mutations alter the expression and activity of signal transduction proteins. The current goal in cancer therapy is to use our knowledge of the molecular alterations in a cancer cell to choose the most appropriate signal transduction inhibitor for an individual patient. The topic of this review is the mammalian target of rapamycin (mTOR) kinase signaling pathway, which is aberrantly activated in many types of human cancer. We will discuss the mTOR pathway and the potential mechanisms that contribute to its activation in cancer, together with data relating to the potential for inhibitors targeting the mTOR-signaling pathway to impact on breast cancer therap

    Prolactin Mediated Intracellular Signaling in Mammary Epithelial Cells

    Get PDF
    Prolactin binds to a member of the cytokine receptor superfamily. The cytoplasmic domain of the prolactin receptor (PrlR)4 displays no enzymatic activity yet prolactin treatment leads to the induction of protein tyrosine phosphorylation. PrlR is associated with JAK2, a protein tyrosine kinase whose activity is stimulated following receptor dimerization. JAK2 subsequently phosphorylates PrlR and other cellular proteins which are recruited to the activated receptor complex. Among the JAK2 substrates is the transcription factor Stat5 whose phosphorylation mediates the transcriptional activation of Ξ²-casein gene expression. In this review we discuss the prolactin induced signaling pathways which mediate differentiation of the mammary glan

    c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Get PDF
    BACKGROUND: The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. RESULTS: Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. CONCLUSION: We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role for c-Myc in progenitor cell proliferation and/or survival

    Differential Roles of Fibroblast Growth Factor Receptors (FGFR) 1, 2 and 3 in the Regulation of S115 Breast Cancer Cell Growth

    Get PDF
    Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level
    • …
    corecore