1,877 research outputs found

    The transcription factors Ets1 and Sox10 interact during murine melanocyte development

    Get PDF
    Melanocytes, the pigment-producing cells, arise from multipotent neural crest (NC) cells during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The variable spotting mouse pigmentation mutant arose spontaneously at the Jackson Laboratory. We identified a G-to-A nucleotide transition in exon 3 of the Ets1 gene in variable spotting, which results in a missense G102E mutation. Homozygous variable spotting mice exhibit sporadic white spotting. Similarly, mice carrying a targeted deletion of Ets1 exhibit hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The transcription factor Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of various NC derivatives, including melanocytes. We show that Ets1 is required early for murine NC cell and melanocyte precursor survival in vivo. Given the importance of Ets1 for Sox10 expression in the chick, we investigated a potential genetic interaction between these genes by comparing the hypopigmentation phenotypes of single and double heterozygous mice. The incidence of hypopigmentation in double heterozygotes was significantly greater than in single heterozygotes. The area of hypopigmentation in double heterozygotes was significantly larger than would be expected from the addition of the areas of hypopigmentation of single heterozygotes, suggesting that Ets1 and Sox10 interact synergistically in melanocyte development. Since Sox10 is also essential for enteric ganglia development, we examined the distal colons of Ets1 null mutants and found a significant decrease in enteric innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate an enhancer critical for Sox10 expression in NC-derived structures. Furthermore, enhancer activation was significantly inhibited by the variable spotting mutation. Together, these results suggest that Ets1 and Sox10 interact to promote proper melanocyte and enteric ganglia development from the NC

    Advancing Alternative Analysis: Integration of Decision Science.

    Get PDF
    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts

    NovoGraph: Human genome graph construction from multiple long-read de novo assemblies [version 2; referees: 2 approved]

    Get PDF
    Genome graphs are emerging as an important novel approach to the analysis of high-throughput human sequencing data. By explicitly representing genetic variants and alternative haplotypes in a mappable data structure, they can enable the improved analysis of structurally variable and hyperpolymorphic regions of the genome. In most existing approaches, graphs are constructed from variant call sets derived from short-read sequencing. As long-read sequencing becomes more cost-effective and enables de novo assembly for increasing numbers of whole genomes, a method for the direct construction of a genome graph from sets of assembled human genomes would be desirable. Such assembly-based genome graphs would encompass the wide spectrum of genetic variation accessible to long-read-based de novo assembly, including large structural variants and divergent haplotypes. Here we present NovoGraph, a method for the construction of a human genome graph directly from a set of de novo assemblies. NovoGraph constructs a genome-wide multiple sequence alignment of all input contigs and creates a graph by merging the input sequences at positions that are both homologous and sequence-identical. NovoGraph outputs resulting graphs in VCF format that can be loaded into third-party genome graph toolkits. To demonstrate NovoGraph, we construct a genome graph with 23,478,835 variant sites and 30,582,795 variant alleles from de novo assemblies of seven ethnically diverse human genomes (AK1, CHM1, CHM13, HG003, HG004, HX1, NA19240). Initial evaluations show that mapping against the constructed graph reduces the average mismatch rate of reads from sample NA12878 by approximately 0.2%, albeit at a slightly increased rate of reads that remain unmapped

    Light whole genome sequence for SNP discovery across domestic cat breeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV) that are homologues to human scourges (cancer, SARS, and AIDS respectively). However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP) map is required in order to accomplish disease and phenotype association discovery.</p> <p>Description</p> <p>To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%.</p> <p>Conclusions</p> <p>These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases.</p

    Effort required to finish shotgun-generated genome sequences differs significantly among vertebrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The approaches for shotgun-based sequencing of vertebrate genomes are now well-established, and have resulted in the generation of numerous draft whole-genome sequence assemblies. In contrast, the process of refining those assemblies to improve contiguity and increase accuracy (known as 'sequence finishing') remains tedious, labor-intensive, and expensive. As a result, the vast majority of vertebrate genome sequences generated to date remain at a draft stage.</p> <p>Results</p> <p>To date, our genome sequencing efforts have focused on comparative studies of targeted genomic regions, requiring sequence finishing of large blocks of orthologous sequence (average size 0.5-2 Mb) from various subsets of 75 vertebrates. This experience has provided a unique opportunity to compare the relative effort required to finish shotgun-generated genome sequence assemblies from different species, which we report here. Importantly, we found that the sequence assemblies generated for the same orthologous regions from various vertebrates show substantial variation with respect to misassemblies and, in particular, the frequency and characteristics of sequence gaps. As a consequence, the work required to finish different species' sequences varied greatly. Application of the same standardized methods for finishing provided a novel opportunity to "assay" characteristics of genome sequences among many vertebrate species. It is important to note that many of the problems we have encountered during sequence finishing reflect unique architectural features of a particular vertebrate's genome, which in some cases may have important functional and/or evolutionary implications. Finally, based on our analyses, we have been able to improve our procedures to overcome some of these problems and to increase the overall efficiency of the sequence-finishing process, although significant challenges still remain.</p> <p>Conclusion</p> <p>Our findings have important implications for the eventual finishing of the draft whole-genome sequences that have now been generated for a large number of vertebrates.</p

    Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis

    Get PDF
    Background More than 10 years have elapsed since human papillomavirus (HPV) vaccination was implemented. We did a systematic review and meta-analysis of the population-level impact of vaccinating girls and women against human papillomavirus on HPV infections, anogenital wart diagnoses, and cervical intraepithelial neoplasia grade 2+ (CIN2+)to summarise the most recent evidence about the effectiveness of HPV vaccines in real-world settings and to quantify the impact of multiple age-cohort vaccination.Methods In this updated systematic review and meta-analysis, we used the same search strategy as in our previous paper. We searched MEDLINE and Embase for studies published between Feb 1, 2014, and Oct 11, 2018. Studies were eligible if they compared the frequency (prevalence or incidence) of at least one HPV-related endpoint (genital HPV infections, anogenital wart diagnoses, or histologically confirmed CIN2+) between pre-vaccination and post-vaccination periods among the general population and if they used the same population sources and recruitment methods before and after vaccination. Our primary assessment was the relative risk (RR) comparing the frequency (prevalence or incidence) of HPV-related endpoints between the pre-vaccination and post-vaccination periods. We stratified all analyses by sex, age, and years since introduction of HPV vaccination. We used random-effects models to estimate pooled relative risks.Findings We identified 1702 potentially eligible articles for this systematic review and meta-analysis, and included 65 articles in 14 high-income countries: 23 for HPV infection, 29 for anogenital warts, and 13 for CIN2+.After 5\u20138 years of vaccination, the prevalence of HPV 16 and 18 decreased significantly by 83% (RR 0\ub717, 95% CI 0\ub711\u20130\ub725) among girls aged 13\u201319 years, and decreased significantly by 66% (RR 0\ub734, 95% CI 0\ub723\u20130\ub749) among women aged 20\u201324 years. The prevalence of HPV 31, 33, and 45 decreased significantly by 54% (RR 0\ub746, 95% CI 0\ub733\u20130\ub766) among girls aged 13\u201319 years. Anogenital wart diagnoses decreased significantly by 67% (RR 0\ub733, 95% CI 0\ub724\u20130\ub746) among girls aged 15\u201319 years, decreased significantly by 54% (RR 0\ub746, 95% CI 0.36\u20130.60) among women aged 20\u201324 years, and decreased significantly by 31% (RR 0\ub769, 95% CI 0\ub753\u20130\ub789) among women aged 25\u201329 years. Among boys aged 15\u201319 years anogenital wart diagnoses decreased significantly by 48% (RR 0\ub752, 95% CI 0\ub737\u20130\ub775) and among men aged 20\u201324 years they decreased significantly by 32% (RR 0\ub768, 95% CI 0\ub747\u20130\ub798). After 5\u20139 years of vaccination, CIN2+ decreased significantly by 51% (RR 0\ub749, 95% CI 0\ub742\u20130\ub758) among screened girls aged 15\u201319 years and decreased significantly by 31% (RR 0\ub769, 95% CI 0\ub757\u20130\ub784) among women aged 20\u201324 years.Interpretation This updated systematic review and meta-analysis includes data from 60 million individuals and up to 8 years of post-vaccination follow-up. Our results show compelling evidence of the substantial impact of HPV vaccination programmes on HPV infections and CIN2+ among girls and women, and on anogenital warts diagnoses among girls, women, boys, and men. Additionally, programmes with multi-cohort vaccination and high vaccination coverage had a greater direct impact and herd effects

    Trends in the incidence of possible severe bacterial infection and case fatality rates in rural communities in Sub-Saharan Africa, South Asia and Latin America, 2010-2013: a multicenter prospective cohort study

    Get PDF
    Background Possible severe bacterial infections (pSBI) continue to be a leading cause of global neonatal mortality annually. With the recent publications of simplified antibiotic regimens for treatment of pSBI where referral is not possible, it is important to know how and where to target these regimens, but data on the incidence and outcomes of pSBI are limited. Methods We used data prospectively collected at 7 rural community-based sites in 6 low and middle income countries participating in the NICHD Global Network’s Maternal and Newborn Health Registry, between January 1, 2010 and December 31, 2013. Participants included pregnant women and their live born neonates followed for 6 weeks after delivery and assessed for maternal and infant outcomes. Results In a cohort of 248,539 infants born alive between 2010 and 2013, 32,088 (13 %) neonates met symptomatic criteria for pSBI. The incidence of pSBI during the first 6 weeks of life varied 10 fold from 3 % (Zambia) to 36 % (Pakistan), and overall case fatality rates varied 8 fold from 5 % (Kenya) to 42 % (Zambia). Significant variations in incidence of pSBI during the study period, with proportions decreasing in 3 sites (Argentina, Kenya and Nagpur, India), remaining stable in 3 sites (Zambia, Guatemala, Belgaum, India) and increasing in 1 site (Pakistan), cannot be explained solely by changing rates of facility deliveries. Case fatality rates did not vary over time. Conclusions In a prospective population based registry with trained data collectors, there were wide variations in the incidence and case fatality of pSBI in rural communities and in trends over time. Regardless of these variations, the burden of pSBI is still high and strategies to implement timely diagnosis and treatment are still urgently needed to reduce neonatal mortality

    The Antenatal Corticosteroids Trial (ACT)\u27s explanations for neonatal mortality - a secondary analysis.

    Get PDF
    BACKGROUND: The Antenatal Corticosteroid Trial assessed the feasibility, effectiveness, and safety of a multifaceted intervention to increase the use of antenatal corticosteroids (ACS) in mothers at risk of preterm birth at all levels of care in low and middle-income countries. The intervention effectively increased the use of ACS but was associated with an overall increase in neonatal deaths. We aimed to explore plausible pathways through which this intervention increased neonatal mortality. METHODS: We conducted a series of secondary analyses to assess whether ACS or other components of the multifaceted intervention that might have affected the quality of care contributed to the increased mortality observed: 1) we compared the proportion of neonatal deaths receiving ACS between the intervention and control groups; 2) we compared the antenatal and delivery care process in all births between groups; 3) we compared the rates of possible severe bacterial infection between groups; and 4) we compared the frequency of factors related to ACS administration or maternal high risk conditions at administration between the babies who died and those who survived 28 days among all births in the intervention group identified as high risk for preterm birth and received ACS. RESULTS: The ACS exposure among the infants who died up to 28 days was 29 % in the intervention group compared to 6 % in controls. No substantial differences were observed in antenatal and delivery care process between groups. The risk of pSBI plus neonatal death was significantly increased in intervention clusters compared to controls (2.4 % vs. 2.0 %, adjusted RR 1.17, 95 % CI 1.04-1.30, p = 0.008], primarily for infants with birth weight at or above the 25(th) percentile. Regarding factors related to ACS administration, term infants who died were more likely to have mothers who received ACS within 7 days of delivery compared to those who survived 28 days (26.5 % vs 17.9 %, p = 0.014), and their mothers were more likely to have been identified as high risk for hypertension and less likely for signs of preterm labor. CONCLUSIONS: These results suggest that ACS more than other components of the intervention may have contributed to the overall increased neonatal mortality. ACS may have also been involved in the observed increased risk of neonatal infection and death. Further trials are urgently needed to clarify the effectiveness and safety of ACS on neonatal health in low resource settings
    corecore