1,621 research outputs found

    The process of genome shrinkage in the obligate symbiont Buchnera aphidicola

    Get PDF
    BACKGROUND: Very small genomes have evolved repeatedly in eubacterial lineages that have adopted obligate associations with eukaryotic hosts. Complete genome sequences have revealed that small genomes retain very different gene sets, raising the question of how final genome content is determined. To examine the process of genome reduction, the tiny genome of the endosymbiont Buchnera aphidicola was compared to the larger ancestral genome, reconstructed on the basis of the phylogenetic distribution of gene orthologs among fully sequenced relatives of Escherichia coli and Buchnera. RESULTS: The reconstructed ancestral genome contained 2,425 open reading frames (ORFs). The Buchnera genome, containing 564 ORFs, consists of 153 fragments of 1-34 genes that are syntenic with reconstructed ancestral regions. On the basis of this reconstruction, 503 genes were eliminated within syntenic fragments, and 1,403 genes were lost from the gaps between syntenic fragments, probably in connection with genome rearrangements. Lost regions are sometimes large, and often span functionally unrelated genes. In addition, individual genes and regulatory regions have been lost or eroded. For the categories of DNA repair genes and rRNA genes, most lost loci fall in regions between syntenic fragments. This history of gene loss is reflected in the sequences of intergenic spacers at positions where genes were once present. CONCLUSIONS: The most plausible interpretation of this reconstruction is that Buchnera lost many genes through the fixation of large deletions soon after the acquisition of an obligate endosymbiotic lifestyle. An implication is that final genome composition may be partly the chance outcome of initial deletions and that neighboring genes influence the likelihood of loss of particular genes and pathways

    Genomic Features Of A Bumble Bee Symbiont Reflect Its Host Environment

    Get PDF
    Here, we report the genome of one gammaproteobacterial member of the gut microbiota, for which we propose the name >Candidatus Schmidhempelia bombi,> that was inadvertently sequenced alongside the genome of its host, the bumble bee, Bombus impatiens. This symbiont is a member of the recently described bacterial order Orbales, which has been collected from the guts of diverse insect species; however, >Ca. Schmidhempelia> has been identified exclusively with bumble bees. Metabolic reconstruction reveals that >Ca. Schmidhempelia> lacks many genes for a functioning NADH dehydrogenase I, all genes for the high-oxygen cytochrome o, and most genes in the tricarboxylic acid (TCA) cycle. >Ca. Schmidhempelia> has retained NADH dehydrogenase II, the low-oxygen specific cytochrome bd, anaerobic nitrate respiration, mixed-acid fermentation pathways, and citrate fermentation, which may be important for survival in low-oxygen or anaerobic environments found in the bee hindgut. Additionally, a type 6 secretion system, a Flp pilus, and many antibiotic/multidrug transporters suggest complex interactions with its host and other gut commensals or pathogens. This genome has signatures of reduction (2.0 megabase pairs) and rearrangement, as previously observed for genomes of host-associated bacteria. A survey of wild and laboratory B. impatiens revealed that >Ca. Schmidhempelia> is present in 90% of individuals and, therefore, may provide benefits to its host.Center for Insect Science (University of Arizona)National Science Foundation NSF 1046153NIH Director's Pioneer 1DP1OD006416-01NIH R01-HG006677Swiss National Science Foundation 140157, 147881Integrative Biolog

    Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Arsenophonus </it>is a group of symbiotic, mainly insect-associated bacteria with rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic relationships varying from parasitic son-killers to coevolving mutualists.</p> <p>The present study extends the currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic relationships within the genus.</p> <p>Results</p> <p>The analysis of 110 <it>Arsenophonus </it>sequences (incl. <it>Riesia </it>and <it>Phlomobacter</it>), provides a robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, unstable inner topology indicates that complete understanding of <it>Arsenophonus </it>evolution cannot be achieved with 16S rDNA. Moreover, taxonomically restricted <it>Sampling </it>matrices prove sensitivity of the phylogenetic signal to sampling; in some cases, <it>Arsenophonus </it>monophyly is disrupted by other symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-symbiont evolution and the haphazard association of the symbionts with distant hosts. A further conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this incongruence could be caused by methodological artifacts, such as intragenomic variability.</p> <p>Conclusion</p> <p>The sample of currently available molecular data presents the genus <it>Arsenophonus </it>as one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches between entirely different life styles. Due to these properties, the genus should play an important role in the studies of evolutionary trends in insect intracellular symbionts. However, under the current practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to various methodological artifacts that may even lead to description of new <it>Arsenophonus </it>lineages as independent genera (e.g. <it>Riesia </it>and <it>Phlomobacter</it>). The resolution of the evolutionary questions encountered within the <it>Arsenophonus </it>clade will thus require identification of new molecular markers suitable for the low-level phylogenetics.</p

    Low nutritive quality as defense against herbivores

    Full text link
    Contrary to a widespread assumption in the literature on plant-herbivore interactions, individual plants do not necessarily benefit by possessing traits which lower herbivore fitness. In particular, genes conferring lowered nutritive quality could even increase herbivore damage under certain circumstances. Three special sets of conditions are outlined in which low nutritive quality would lower herbivore-induced damage to an individual plant. These sets are far from exhaustive. It is concluded that the adaptiveness of lowered nutritive quality in herbivore defense is widely possible but in no case demonstrated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23144/1/0000068.pd

    Aphid Thermal Tolerance Is Governed by a Point Mutation in Bacterial Symbionts

    Get PDF
    Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%), further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development

    Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host

    Get PDF
    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420–650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD–carboxypeptidases (LdcA1, LdcA2,ψLdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (ψDnaE), and ATP synthase delta chain (ψAtpH). Buchnera was the apparent source of two highly truncated pseudogenes (ψDnaE and ψAtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host nuclear genome, but suggest that aphids utilize a set of duplicated genes acquired from other bacteria in the context of the Buchnera–aphid mutualism

    Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution

    Get PDF
    The main genomic changes in the evolution of host-restricted microbial symbionts are ongoing inactivation and loss of genes combined with rapid sequence evolution and extreme structural stability; these changes reflect high levels of genetic drift due to small population sizes and strict clonality. This genomic erosion includes irreversible loss of genes in many functional categories and can include genes that underlie the nutritional contributions to hosts that are the basis of the symbiotic association. Candidatus Sulcia muelleri is an ancient symbiont of sap-feeding insects and is typically coresident with another bacterial symbiont that varies among host subclades. Previously sequenced Sulcia genomes retain pathways for the same eight essential amino acids, whereas coresident symbionts synthesize the remaining two. Here, we describe a dual symbiotic system consisting of Sulcia and a novel species of Betaproteobacteria, Candidatus Zinderia insecticola, both living in the spittlebug Clastoptera arizonana. This Sulcia has completely lost the pathway for the biosynthesis of tryptophan and, therefore, retains the ability to make only 7 of the 10 essential amino acids. Zinderia has a tiny genome (208 kb) and the most extreme nucleotide base composition (13.5% G + C) reported to date, yet retains the ability to make the remaining three essential amino acids, perfectly complementing capabilities of the coresident Sulcia. Combined with the results from related symbiotic systems with complete genomes, these data demonstrate the critical role that bacterial symbionts play in the host insect’s biology and reveal one outcome following the loss of a critical metabolic activity through genome reduction

    Experimental Results of Hydrogen Slosh in a 62 Cubic Foot (1750 Liter) Tank

    Get PDF
    Extensive slosh testing with liquid and slush hydrogen was conducted in a 62 cubic foot spherical tank to characterize the thermodynamic response of the system under normal gravity conditions. Slosh frequency and amplitude, pressurant type, ramp pressure, and ullage volume were parametrically varied to assess the effect of each of these parameters on the tank pressure and fluid/wall temperatures. A total of 91 liquid hydrogen and 62 slush hydrogen slosh tests were completed. Both closed tank tests and expulsions during sloshing were performed. This report presents and discusses highlights of the liquid hydrogen closed tank results in detail and introduces some general trends for the slush hydrogen tests. Summary comparisons between liquid and slush hydrogen slosh results are also presented
    corecore