6,447 research outputs found

    Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    Get PDF
    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdfsdf interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of β2\beta_{2}-β3\beta_{3} energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3\beta_{3}-soft potentials.Comment: 18 pages, 18 figures, 1 tabl

    Deductive Optimization of Relational Data Storage

    Full text link
    Optimizing the physical data storage and retrieval of data are two key database management problems. In this paper, we propose a language that can express a wide range of physical database layouts, going well beyond the row- and column-based methods that are widely used in database management systems. We use deductive synthesis to turn a high-level relational representation of a database query into a highly optimized low-level implementation which operates on a specialized layout of the dataset. We build a compiler for this language and conduct experiments using a popular database benchmark, which shows that the performance of these specialized queries is competitive with a state-of-the-art in memory compiled database system

    The exact dynamical solution for two dust shells collapsing towards a black hole

    Full text link
    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well known "frozen star" paradox. Following the seminal work of Oppenheimer and Schneider (1939), we present the exact solution for two dust shells collapsing towards a pre-existing black hole. We find that the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory and and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This result in principle may be tested experimentally if a beam of light travels across the shell. We conclude that the concept of the "frozen star" should be abandoned, since matter can indeed cross a black hole's horizon according to the clock of an external observer. Since matter will not accumulate around the event horizon of a black hole, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon, will never arrive at the "singularity" (i.e. the exact center of the black hole.Comment: 4 pages, 3 figures, contributed talk to the Second Kolkata Conference on Observational Evidence for Black Holes in the Universe, Feb. 2008, Editor Sandip Chakrabart

    Faddeev calculation of pentaquark Θ+\Theta^+ in the Nambu-Jona-Lasinio model-based diquark picture

    Full text link
    A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark Θ+\Theta^+ in the diquark picture of Jaffe and Wilczek in which Θ+\Theta^+ is a diquark-diquark-sˉ{\bar s} three-body system. Nambu-Jona-Lasinio (NJL) model is used to calculate the lowest order diagrams in the two-body scatterings of sˉD{\bar s}D and DDD D. With the use of coupling constants determined from the meson sector, we find that sˉD{\bar s}D interaction is attractive in s-wave while DDDD interaction is repulsive in p-wave. With only the lowest three-body channel considered, we do not find a bound 12+ \frac 12^+ pentaquark state. Instead, a bound pentaquark Θ+\Theta^+ with 12 \frac 12^- is obtained with a unphysically strong vector mesonic coupling constants.Comment: 22 pages, 11 figures, accepted version in Phys. Rev. C. Summary of main changes/corrections: 1. "which only holds at tree level" below the eq. (23) is added. 2. In the last paragraph of p.23 we added a remark that the coupling constant obtained from Lambda mass is different from the estimate as obtained from the meson spectru

    Comparison between Windowed FFT and Hilbert-Huang Transform for Analyzing Time Series with Poissonian Fluctuations: A Case Study

    Get PDF
    Hilbert-Huang Transform (HHT) is a novel data analysis technique for nonlinear and non-stationary data. We present a time-frequency analysis of both simulated light curves and an X-ray burst from the X-ray burster 4U 1702-429 with both the HHT and the Windowed Fast Fourier Transform (WFFT) methods. Our results show that the HHT method has failed in all cases for light curves with Poissonian fluctuations which are typical for all photon counting instruments used in astronomy, whereas the WFFT method can sensitively detect the periodic signals in the presence of Poissonian fluctuations; the only drawback of the WFFT method is that it cannot detect sharp frequency variations accurately.Comment: 10 pages, 12 figure

    Modeling pulsar time noise with long term power law decay modulated by short term oscillations of the magnetic fields of neutron stars

    Full text link
    We model the evolution of the magnetic fields of neutron stars as consisting of a long term power-law decay modulated by short term small amplitude oscillations. Our model predictions on the timing noise ν¨\ddot\nu of neutron stars agree well with the observed statistical properties and correlations of normal radio pulsars. Fitting the model predictions to the observed data, we found that their initial parameter implies their initial surface magnetic dipole magnetic field strength ~ 5E14 G at ~0.4 year old and that the oscillations have amplitude between E-8 to E-5 and period on the order of years. For individual pulsars our model can effectively reduce their timing residuals, thus offering the potential of more sensitive detections of gravitational waves with pulsar timing arrays. Finally our model can also re-produce their observed correlation and oscillations of the second derivative of spin frequency, as well as the "slow glitch" phenomenon.Comment: 10 pages, 6 figures, submitted to IJMPD, invited talk in the 3rd Galileo-XuGuangqi Meeting}, Beijing, China, 12-16 October 201
    corecore