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Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei
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A systematic analysis of low-lying quadrupole and octupole collective states is presented based on the
microscopic energy density functional framework. By mapping the deformation constrained self-consistent
axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson
model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters
are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting
IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity
collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity:
Th, Ra, Sm, and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of
β2-β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape
transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.
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I. INTRODUCTION

The study of equilibrium shapes and shape transitions
presents a recurrent theme in nuclear structure physics [1–3].
Even though most deformed medium-heavy and heavy nuclei
exhibit quadrupole, reflection-symmetric equilibrium shapes,
there are regions in the mass table where octupole de-
formations (reflection-asymmetric, pear-like shapes) occur
(see [4] for a review). In particular, nuclei with neutron
(proton) number N (Z) ≈ 34, 56, 88, and 134 [4]. Reflection-
asymmetric shapes are characterized by the presence of
negative-parity bands, and by pronounced electric dipole and
octupole transitions. In the case of static octupole deforma-
tion, for instance, the lowest positive-parity even-spin states
and the negative-parity odd-spin states form an alternating-
parity band, with states connected by the enhanced E1
transitions.

In a simple microscopic picture octupole deformation is
expected to develop through a coupling of orbitals in the
vicinity of the Fermi surface with quantum numbers (l, j ) and
an intruder unique-parity orbital with (l + 3, j + 3) [4]. For
instance, in the case of heavy (Z ≈ 88 and N ≈ 134) nuclei in
the region of light actinides, the coupling of the neutron orbitals
g9/2 and j15/2, and that of the proton single-particle states
f7/2 and i13/2, can lead to octupole mean-field deformations.
Structure phenomena related to reflection-asymmetric nuclear
shapes have been extensively investigated in numerous experi-
mental studies [4,5]. In particular, very recently clear evidence
for pronounced octupole deformation in the region Z ≈ 88
and N ≈ 134, e.g., in 220Rn and 224Ra, has been reported in
Coulomb excitation experiments with radioactive ion beams
[6]. Also in the rare-earth region (Z ≈ 56 and N ≈ 88), a
recent experiment [7] has revealed low-energy negative-parity
bands in 152Sm. The renewed interest in studies of reflec-
tion asymmetric nuclear shapes using accelerated radioactive
beams [6] point to the significance of a timely systematic
theoretical analysis of quadrupole-octupole collective states

of nuclei in several mass regions of the nuclear chart where
octupole shapes are expected to occur.

A variety of theoretical methods have been applied to
studies of reflection asymmetric shapes and the evolution of the
corresponding negative-parity collective states. These include
self-consistent mean-field models [8–17], algebraic (or inter-
acting boson) models [18–22], phenomenological collective
models [23–30], and cluster models [31–33]. In particular,
a great number of self-consistent mean-field calculations of
nuclei with static or dynamic octupole deformations have been
reported, e.g., based on the Nilsson-Strutinsky method [9],
Skyrme [11,12] and Gogny [13–17] effective interactions, and
relativistic mean-field (RMF) models [34–36].

Nuclear energy density functionals (EDFs) enable a com-
plete and accurate description of ground-state properties and
collective excitations over the whole nuclide chart [37]. Both
nonrelativistic [38–40] and relativistic [41,42] EDFs have been
successfully applied to the description of the evolution of
single-nucleon shell structures and the related shape-transition
and shape-coexistence phenomena. To compute excitation
spectra and transition rates, however, the EDF framework
has to be extended to take into account the restoration of
symmetries broken in the mean-field approximation, and
fluctuations in the collective coordinates. In this study we
employ a recently developed method [43] for determining
the Hamiltonian of the interacting boson model (IBM) [44],
starting with a microscopic, EDF-based self-consistent mean-
field calculation of deformation energy surfaces. By mapping
the deformation constrained self-consistent energy surfaces
onto the equivalent Hamiltonian of the IBM, that is, onto
the energy expectation value in the boson condensate state,
the Hamiltonian parameters are determined. The resulting
IBM Hamiltonian is used to calculate excitation spectra and
transition rates. This technique has been extended and applied
to study moments of inertia of deformed rotational nuclei [45],
to analyze the γ -softness in medium-heavy and heavy nuclei
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[46], and to describe coexistence and mixing of different
intrinsic shapes [47]. More recently the method of [43] has
been applied to a study of the octupole shape-phase transition
in the Th isotopic chain [48].

This work extends the study of Ref. [48] and presents a
microscopic analysis of octupole shape transitions in four
isotopic chains characteristic for two regions of octupole
deformation and collectivity: Th, Ra, Sm, and Ba. The study
is based on the microscopic framework of nuclear energy
density functionals (EDFs), and the Hamiltonian of the sdf
IBM [19,49] is determined from axial quadrupole-octupole
deformation energy surfaces calculated employing the rel-
ativistic Hartree-Bogoliubov model based on the universal
energy density functional DD-PC1 [50]. The mapped sdf IBM
Hamiltonian is used to calculate low-energy spectra and tran-
sition rates for both positive- and negative-parity states of the
four sequences of isotopes. The semimicroscopic relativistic
functional DD-PC1 was adjusted to the experimental masses of
a set of 64 deformed nuclei in the mass regions A ≈ 150–180
and A ≈ 230–250, and further tested in a number of mean-field
and beyond-mean-field calculations in different mass regions.

The article is organized as follows. In Sec. II we describe
the theoretical framework. The systematics of self-consistent
mean-field results and the quality of the mapping onto the IBM
are described in Sec. III. Spectroscopic properties calculated
with the mapped sdf IBM Hamiltonian are discussed in
Sec. IV, including the systematics of low-lying positive-
and negative-parity states, E1, E2, and E3 transitions, and
detailed level schemes of selected nuclei. Section V contains
the summary and concluding remarks.

II. DESCRIPTION OF THE MODEL

The analysis starts by performing constrained self-
consistent relativistic mean-field calculations for axially sym-
metric shapes in the (β2,β3) plane, with constraints on
the mass quadrupole Q20 and octupole Q30 moments. The
dimensionless shape variables βλ (λ = 2,3) are defined in
terms of the multipole moments Qλ0:

βλ = 4π

3ARλ
Qλ0 (1)

with R = 1.2A1/3 fm. The relativistic Hartree-Bogoliubov
(RHB) model [41] is used to calculate constrained energy
surfaces, the functional in the particle-hole channel is DD-PC1,
and pairing correlations are taken into account by employing
an interaction that is separable in momentum space, and
is completely determined by two parameters adjusted to
reproduce the empirical bell-shaped pairing gap in symmetric
nuclear matter [42,51]. For technical details of the calculation
of self-consistent RHB energy surfaces, the reader is referred
to Refs. [35,36]. In this work the energy surface in RHB
calculations refers to the total energy of the nuclear system
as a function of deformation parameters.

A quantitative study of low-lying quadrupole and octupole
collective states must go beyond a simple mean-field cal-
culation of energy surfaces and take into account collective
correlations related to restoration of symmetries broken by the
mean field and quantum fluctuations in deformation variables.

To this end we employ the interacting boson model (IBM)
[44] to analyze spectroscopic properties associated to both
quadrupole and octupole collective degrees of freedom. The
building blocks of the most standard version of the IBM that
includes quadrupole degrees of freedom are the monopole
s and quadrupole d bosons, that correspond to Jπ = 0+
and 2+ collective pairs of valence nucleons, respectively
[52]. To describe reflection-asymmetric deformations and
the corresponding negative-parity states, in addition to these
positive-parity bosons the model space must include the
octupole (Jπ = 3−) f boson [19,49].

A general IBM Hamiltonian of the sdf system contains
interaction terms acting in the sd and f boson spaces, and the
coupling between the two spaces [49]:

Ĥ = Ĥsd + Ĥf + Ĥsdf . (2)

In the present analysis we employ the following terms:

Ĥsd = εd n̂d + κ2Q̂sd · Q̂sd + αL̂d · L̂d (3)

with n̂d = d† · d̃ , Q̂sd = s†d̃ + d†s + χd [d† × d̃](2), and L̂d =√
10[d† × d̃](1) denoting the d-boson number operator, the

quadrupole operator, and the angular momentum operator for
the sd boson space, respectively:

Ĥf = εf n̂f + κ ′
2Q̂f · Q̂f (4)

n̂f = f † · f̃ is the f -boson number operator, and Q̂f =
χf [f † × f̃ ](2) denotes the quadrupole f -boson interaction.
Finally,

Ĥsdf = κ ′′
2 Q̂sd · Q̂f + κ3 : V̂

†
3 · V̂3 : , (5)

where the last term is the octupole-octupole interaction written
in the normal-ordered form with V̂

†
3 = s†f̃ + χ3[d† × f̃ ](3). In

the present calculation κ ′
2 = κ ′′

2 /2 = κ2. The Hamiltonians of
Eqs. (3) and (4) have been used in a number of phenomeno-
logical IBM studies of low-energy quadrupole and octupole
collective states. The coupling Hamiltonian Eq. (5) is similar
to the one used in Ref. [53], and can be derived from a
microscopic octupole-octupole interaction between neutron
and the proton bosons by mapping the totally symmetric
state of the IBM-2 system to the corresponding state in
the IBM-1 [53]. In this work, however, the dipole-dipole
interaction term L̂d · L̂f (with L̂f = √

28[f † × f̃ ](1)) is not
included, as it has been shown [22] to be of little relevance for
low-lying collective states. In contrast to previous sdf IBM
phenomenological studies, in which the maximum number of
f bosons Nmax

f has been kept constant to reduce the model
space and thus computing time (Nmax

f = 1 in most cases), in
the present analysis both positive- and negative-parity bosons
are treated in the same way, that is, there is no truncation
specific for the f -boson number. The total number of bosons
s + d + f is determined by the number of valence proton and
neutron pairs.

We also note that some empirical IBM studies suggested the
importance of including the p (Jπ = 1−) boson to improve the
agreement with experimental results (for instance, [20,54,55]),
particularly for the E1 properties. From the algebraic point of
view it was shown [19] that the p boson is necessary to obtain
the SU(3) dynamical symmetry of the U(16) group. On the
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other hand, the microscopic origin of the p boson has been
related either to the spurious center-of-mass motion [19], or to
the giant dipole resonance [56]. Here we do not include the p
boson in the model space, as in fact neither of these degrees
of freedom are particularly relevant for an analysis based on
microscopic mean-field calculations.

For each nucleus the parameters of the Hamiltonian: εd , εf ,
κ2, κ3, χd , χf , and χ3, are determined from the microscopic
RHB energy surfaces employing the procedure of Ref. [43,57]:
the microscopic constrained self-consistent mean-field energy
surface is mapped onto the equivalent IBM energy surface, that
is, on the expectation value of the IBM Hamiltonian 〈φ|Ĥ |φ〉
in the boson condensate state |φ〉 [58]:

|φ〉 = 1√
NB!

(λ†)NB |−〉 with λ† = s† + β̄2d
†
0 + β̄3f

†
0 .

(6)

NB and |−〉 denote the total number of bosons, that is, half the
number of valence nucleons [52], and the boson vacuum (inert
core), respectively. β̄2 and β̄3 represent the axial quadrupole
and octupole shape variables in the boson system, respectively,
equivalent to the deformation parameters of Eq. (1) that are
used to characterize the RHB energy surfaces. However, since
the model spaces of the RHB and the IBM are different,
one finds that generally β̄λ is also different from βλ [58].
For λ = 2, the proportionality β̄2 ≡ C2β2, with C2 being
a coefficient, appears to be a good approximation [43,58].
Here we further assume that, independently of the λ = 2
deformation, a similar relation also holds for λ = 3, that is,
β̄3 ≡ C3β3. The coefficients Cλ=2,3 are determined basically
by adjusting the location of the minimum on the (β2,β3) energy
surface. In the present study, the doubly-magic nuclei 208Pb
and 132Sn are taken as inert cores for the considered regions
of Th-Ra and Sm-Ba nuclei, respectively. Therefore, NB takes
values from 6 to 12, from 5 to 10, from 7 to 12, and from 4 to 9
for 220–232Th, 218–228Ra, 146–156Sm, and 140–150Ba, respectively.
The analytic expression for the expectation value of the IBM
Hamiltonian reads

E(β̄2,β̄3) = NB

1 + β̄2
2 + β̄2

3

(
ε′
s + ε′

d β̄
2
2 + ε′

f β̄2
3

)

+ NB(NB − 1)(
1 + β̄2

2 + β̄2
3

)2

×
[
κ2

(
2β̄2 −

√
2

7
χdβ̄

2
2 − 2√

21
χf β̄2

3

)2

+ 4κ3

(
β̄3 − 2√

15
χ3β̄2β̄3

)2]
, (7)

with

ε′
s = 5κ2, ε′

d = εd + 6α + (
1 + χ2

d

)
κ2

and ε′
f = εf + 5

7
κ2χ

2
f . (8)

By equating the energy expectation value as a function of
the quadrupole and octupole deformation parameters to the
microscopic energy surface in the neighborhood of the energy

minimum (typically up to 2 MeV from the minimum), the IBM
Hamiltonian parameters can be determined without invoking
any phenomenological adjustment to experiment.

The coupling constant of the L̂d · L̂d term, α, is adjusted
separately in such a way that the cranking moment of inertia
calculated in the boson intrinsic state on the β3 = 0 axis
becomes identical to the corresponding one obtained from
the mean-field model [45].

The resulting sdf IBM Hamiltonian is diagonalized em-
ploying the code OCTUPOLE [59]. This generates the excitation
spectra and, subsequently, electromagnetic transition rates,
that is, the reduced transition probabilities B(Eλ; J → J ′):

B(Eλ; J → J ′) = 1

2J + 1
|〈J ′||T̂ (Eλ)||J 〉|2, (9)

with |J 〉 (|J ′〉) being the wave function for the initial (final)
state with spin J (J ′). The E1, E2, and E3 operators, denoted
here T̂ (E1), T̂ (E2), and T̂ (E3), respectively, are defined as
follows:

T̂ (E1) = e1(d† × f̃ + f † × d̃)(1), (10)

T̂ (E2) = e2Q̂, (11)

where Q̂ = Q̂sd + Q̂f , and the parameters χd and χf are
consistently the same as the ones used in the Hamiltonian
and, finally,

T̂ (E3) = e3(V̂ †
3 + V̂3). (12)

The operator V̂
†

3 is defined in Eq. (5), and again the same value
for χ3 is consistently used in the Hamiltonian and E3 operator.
e1, e2, and e3 denote the corresponding effective charges. Their
values are e1 = 0.01 eb1/2 (taken from [60]) for all nuclei
considered, e2 = 0.19 eb (from [20]), and 0.13 eb (from [18])
for Th-Ra and Sm-Ba isotopes, respectively. The values e3 =
0.15 eb3/2 for Th-Ra and e3 = 0.09 eb3/2 for Sm-Ba isotopes
are adjusted to reproduce the overall trend of experimental
results.

From the calculated B(Eλ; J → J ′) values, one obtains the
transition intrinsic moments Qλ(J → J ′):

Qλ(J → J ′) =
√

16π

2λ + 1

B(Eλ; J → J ′)
(Jλ00|J ′0)2

, (13)

where (Jλ00|J ′0) denotes the Clebsch-Gordan coefficient.

III. MAPPING THE SELF-CONSISTENT MEAN-FIELD
RESULTS ONTO THE IBM SPACE

A. Systematics of deformation energy surfaces

Figures 1–4 display the axially symmetric deformation
energy surfaces in (β2,β3) plane, calculated with the con-
strained RHB using the microscopic functional DD-PC1, for
the isotopes 222–232Th, 218–228Ra, 146–156Sm, and 140–150Ba,
respectively. Each energy surface is plotted up to 10 MeV
excitation above its absolute minimum, and is symmetric with
respect to the β3 = 0 axis. We note that, in Figs. 1 and 5, the
energy surface of 220Th is not shown, as it is very similar to
the one calculated for the adjacent nucleus 222Th.
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FIG. 1. (Color online) Axially symmetric energy surfaces of the isotopes 222–232Th in the (β2,β3) plane, calculated using the self-consistent
RHB model with the microscopic functional DD-PC1. The contours join points on the surface with the same energy (in MeV), and the color
scale varies in steps of 0.2 MeV. The energy difference between neighboring contours is 1 MeV. Note that energy surfaces are symmetric with
respect to the β3 = 0 axis. Open circles denote the absolute energy minima.

In Fig. 1 we note that already at the mean-field level the
RHB calculation predicts a very interesting structural evolution
in Th isotopic chain. A soft energy surface is calculated for
222Th, with the minimum in the region (β2,β3) ≈ (0,0), and
this will typically lead to low-lying quadrupole vibrational
spectra. Quadrupole deformation becomes significant in 224Th,
and one also notices the emergence of octupole deformation.
The energy minimum is found in the β3 	= 0 region, located at
(β2,β3) ≈ (0.15,0.1). From 224Th to 226,228Th the occurrence
of a rather strongly marked octupole minimum is predicted.
The deepest octupole minimum is calculated in 226Th whereas,
starting from 228Th, the minimum becomes softer in β3

direction. Octupole-soft surfaces are obtained for 230,232Th,
the latter being completely flat in β3. In previous calculations

of Th isotopes with the Nilsson-Strutinsky method that used
a deformed Woods-Saxon potential [9,10], a quadrupole
vibrational shape was obtained for 220Th, and a stable octupole
deformation was predicted to occur in 222–226Th. In those stud-
ies, the most pronounced octupole minimum was calculated
in 224Th, a soft octupole shape was obtained for 228Th and,
finally, a shape without equilibrium octupole deformation for
230Th.

The DD-PC1 energy surfaces of Ra isotopes, shown
in Fig. 2, display a more gradual evolution of octupole
deformation as a function of mass number, and the most
pronounced octupole minimum is predicted in 224Ra in the
region (β2,β3) ≈ (0.15–0.2,0.10–0.15): absolute minimum is
found at (β2,β3) ≈ (0.2,0.15), while the second minimum,

FIG. 2. (Color online) Same as the caption to Fig. 1, but for 218–228Ra.
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FIG. 3. (Color online) Same as the caption to Fig. 1, but for 146–156Sm.

which is very close in energy, locates at (β2,β3) ≈ (0.15,0.10).
These values, particularly the latter one, are rather consistent
with the equilibrium deformation β2 = 0.154 and β3 = 0.097,
extracted from the experimentally determined intrinsic mo-
ments Q2 and Q3, respectively, in Ref. [6]. The minimum
becomes softer in β3 for 226Ra, and a completely β3-soft
potential is predicted in 228Ra, characteristic for the onset
of octupole vibrations. We note that previous mean-field
calculations based on the Nilsson-Strutinsky method [9], and
the constrained Hartree-Fock-Bogoliubov method [14] with
the Gogny D1S [61] and the Barcelona-Catania-Paris (BCP)
[62] effective interactions, predicted the occurrence of the most
prominent octupole equilibrium deformation in 222Ra.

In the other mass region considered in the present study,
the RHB results for Sm isotopes, shown in Fig. 3, exhibit
a simultaneous evolution of both quadrupole and octupole
deformations with increasing neutron number. A stable oc-
tupole minimum is predicted to occur in 150Sm, and the
deformation energy surface becomes soft in β3 for the heavier
isotopes. A similar systematic trend was also obtained in a
recent analysis that used the relativistic mean-field plus BCS
model [34], based on the PK1 parameter set [63]. In Fig. 4
we plot the DD-PC1 deformation energy surfaces for Ba
isotopes. Pronounced octupole minima are predicted starting

from 144,146Ba but, in contrast to the evolution of β3-softness
in Sm nuclei, the deformation of the energy surface does
not become much softer in β3 for heavier isotopes. Shallow
octupole equilibrium minima are obtained in 146Ba–150Ba.
The evolution of quadrupole and octupole deformations in
the Ba isotopes predicted by the functional DD-PC1, and in
particular the octupole minimum in 144,146Ba, is consistent
with previous mean-field calculations based on the Nilsson-
Strutinsky method [9] and the Gogny D1S effective interaction
[14]. Both studies, however, predicted the disappearance of the
octupole minimum in 150Ba, whereas a shallow minimum with
a nonzero β3 value is predicted in the present calculation.

Figures 5–8 display the corresponding IBM energy surfaces
of Th, Ra, Sm, and Ba, mapped from the self-consistent
mean-field results shown in Figs. 1–4. As an illustrative
example we discuss in more detail the Th isotopes. Figure 5
shows that the mapping reproduces the evolution of octupole
minima as a function of neutron number: the quadrupole
minimum for 222Th, the onset of octupole minimum in 224Th,
the pronounced octupole deformation in 226,228Th, and the soft-
octupole potential for 230,232Th, originally displayed by the
microscopic energy surfaces in Fig. 1. If one considers in detail
each individual nucleus, particularly the heavier Th isotopes
with A � 226, it can be noticed that the topology of the mapped

FIG. 4. (Color online) Same as the caption to Fig. 1, but for 140–150Ba.
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FIG. 5. (Color online) Same as the caption to Fig. 1, but for the mapped IBM energy surfaces of 222–232Th.

IBM energy surface reproduces the original microscopic
surface in the region close to the minimum, whereas more
pronounced differences between the microscopic and IBM
energy surface are observed for β2 � 0.0. The reason is that
the IBM Hamiltonian is constructed in such a way that it
reproduces only the neighborhood of the minimum of the
microscopic energy surface, which is most relevant for the
low-lying collective states considered in this work. The IBM
energy surface of Eq. (7) cannot reproduce all the details of
a more complex topology of the microscopic energy surface.
One also notices that generally in regions very far from the
minimum the mapped energy surfaces are more smooth in
comparison to the microscopic ones, which is again due to
the restricted boson model space of the IBM compared to
the fermion space of the RHB framework. This is a general
feature of the IBM approach and cannot be modified by
simply readjusting the model parameters. In particular the

deviations are more apparent for isotopes like 222,224Th, that
are characterized by a smaller boson number. For the other
isotopic chains shown from Figs. 6 to 8, one should find more
or less the same extent of similarity as for the Th chain between
the DD-PC1 and the IBM energy surfaces. Nevertheless, for
the Ra (Ba) nuclei, the IBM energy surfaces are shallower than
for the Th (Sm) nuclei because the number of bosons is more
limited.

Figure 9 displays the mass dependence of the average
value of the octupole deformation 〈β3〉 and the variance
�β3 =

√
〈β2

3 〉 − 〈β3〉2 , for 220–232Th, 218–228Ra, 146–156Sm, and
140–150Ba, obtained from the mapped IBM energy surfaces. The
average octupole deformation and the variance are calculated
over a region on the (β2,β3) plane that extends from the
absolute mean-field minimum up to approximately 2 MeV
excitation energy above the minimum. A prominent feature
in Fig. 9(a) is the sudden increase of 〈β3〉 from 222Th

FIG. 6. (Color online) Same as the caption to Fig. 1, but for the mapped IBM energy surfaces of 218–228Ra.
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FIG. 7. (Color online) Same as the caption to Fig. 1, but for the mapped IBM energy surfaces of 146–156Sm.

to 224Th, from 220Ra to 222Ra, from 148Sm to 150Sm, and
from 142Ba to 144Ba. For these nuclei the energy minimum
is suddenly displaced from the β3 ≈ 0 axis to the β3 	= 0
region. For each isotopic chain the value of 〈β3〉 stabilizes
at β3 ≈ 0.15 in heavier nuclei. The mass dependence of the
variance �β3 in Fig. 9(b) reflects the fluctuation in the octupole
deformation between the nonoctupole deformed shape and
octupole deformation.

B. Parameters of the quadrupole-octupole IBM Hamiltonian

In Fig. 10 we plot the adopted parameters for the sdf IBM
Hamiltonian Eq. (2): εd (a), εf (b), χd (b), χf (c), χf (d),
and χ3 (e), and the coefficient of the shape variables C2 (f)
and C3 (g), determined by mapping the microscopic RHB
energy surfaces onto the corresponding expectation values of
the IBM Hamiltonian in the boson condensate state Eq. (6).
One notices a certain trend in a variation of each parameter as
a function of boson number, that correlates with the variation
of the intrinsic shape (Figs. 1–8). The decrease of the d
[Fig. 10(a)] and f [Fig. 10(b)] single-boson energies with NB

reflects the evolution of quadrupole and octupole collectivity,
respectively. An interesting feature is that, while for Sm and
Ba isotopes generally εd � εf (consistent with the study of
Ref. [60] for Sm isotopes), the values εd and εf are similar

for the Th and Ra isotopic chains. This indicates that for the
latter mass region octupole and quadrupole collectivity are
comparable in magnitude.

Similarly to εd and εf , the values of the parameters χd

[Fig. 10(c)] and χf [Fig. 10(d)] decrease with NB and appear
to saturate around χd = −1 and χf = −2.5. The former value
is close to the SU(3) limit for the sd sector, χd = −√

7/2
[44]. For each chain the parameter χ3 reaches a maximum in
magnitude for a particular isotope, that is, for 226Th (NB = 9),
224Ra (NB = 8), 150Sm (NB = 9), and 144,146Ba [NB = 6,7
(Fig. 10(e)]. As expected from the analyses in Sec. III A,
octupole deformation is most pronounced in these nuclei.
By further increasing the number of bosons the magnitude
of χ3 generally decreases, reflecting the evolution of octupole
softness (cf. Figs. 1–4). The scale parameters C2 [Fig. 10(f)]
and C3 [Fig. 10(g)] evolve monotonically with NB according
to the change of the location of the energy minimum on the
RHB energy surfaces.

The values of the remaining parameters κ2, κ3 and α
are taken to be almost constant with respect to neutron
number: κ2 ≈ −0.06 MeV for the Th-Ra isotopes, κ2 ≈
−0.088 ∼ −0.08 MeV for Sm, and κ2 ≈ −0.11 ∼ −0.09 for
Ba; κ3 ≈ 0.06 MeV for Th-Ra, κ3 ≈ 0.02 MeV for Sm, and
κ3 ≈ 0.04 MeV for the Ba isotopes; α ≈ −0.02 MeV for

FIG. 8. (Color online) Same as the caption to Fig. 1, but for the mapped IBM energy surfaces of 140–150Ba.
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NOMURA, VRETENAR, NIKŠIĆ, AND LU PHYSICAL REVIEW C 89, 024312 (2014)

0

0.06

0.12

0.18

1 4 7 10 13
0

0.04

0.08

<β
3>

(a)

NB

Δ 
β 3

140−150Ba

146−156Sm

218−228Ra

220−232Th

(b)

146−156Sm

140−150Ba 220−232Th

218−228Ra

FIG. 9. (Color online) Mean value of the octupole deformation
parameter 〈β3〉 for 220–232Th, 218–228Ra, 146–156Sm, and 140–150Ba,
computed with the IBM intrinsic state (a), and the correspond-
ing variance �β3 =

√
〈β2

3 〉 − 〈β3〉2 (b), as functions of the boson
number NB .

Th-Ra, 152–156Sm and 146–150Ba, α ≈ −0.01 MeV for 146–150Sm
and 140–144Ba.

IV. SPECTROSCOPIC PROPERTIES

A signature of static reflection-asymmetric shapes is a
negative-parity Kπ = 0− band with Jπ = 1−,3−,5−, . . . ,
located close in energy to the positive-parity ground-state band
Jπ = 0+,2+,4+, . . . . One could say that the two sequences
form a single alternating-parity band, with states connected
by strong E1 transitions [4]. In most nuclei, however, the
two bands are displaced from each other and an approximate
alternating-parity band is experimentally observed only for
states with higher spin, typically J > 5. In the case of
dynamical octupole deformation the negative-parity band lies
at considerably higher energy and the two sequences with
Kπ = 0+ and Kπ = 0− form separate bands. An increase of
the excitation energy of the negative-parity band relative to that
of the positive-parity ground-state band indicates a transition
from octupole deformation to octupole vibrations [4].

In this section we analyze the theoretical spectroscopic
properties that characterize the evolution of octupole deforma-
tion in the four isotopic chains. Part of the results for 220–230Th
have been already reported in our recent study of Ref. [48],
but are included here for completeness and compared to those
obtained for Ra nuclei.

A. Systematics of excitation energies

In Fig. 11 we display the systematics of the calculated
excitation energies of the positive-parity ground-state band
(Kπ = 0+), and in Fig. 12 the lowest negative-parity (Kπ =
0−) sequences in 220–232Th, 218–228Ra, 146–156Sm, and 140–150Ba
nuclei, in comparison with available data [64]. Firstly we note
that, even without any additional adjustment of the parameters
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FIG. 10. (Color online) Total boson number NB dependence of the parameters for the sdf IBM Hamiltonian Eq. (2): εd (a), εf (b), χd (b),
χf (c), χf (d), and χ3 (e), and the coefficient of the shape variables C2 (f) and C3 (g), determined by mapping the microscopic RHB energy
surfaces onto the corresponding expectation values of the IBM Hamiltonian. Solid, dotted, dashed, and dot-dashed lines connect the parameters
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to data, that is, by using parameters determined exclusively
by the microscopic calculation of potential energy surfaces,
the IBM quantitatively reproduces the mass dependence of the
excitation energies of levels that belong to the lowest bands of
positive and negative parity.

The excitation energies of positive-parity states system-
atically decrease with mass number, reflecting the increase
of quadrupole collectivity. For instance, 220,222Th exhibit a
quadrupole vibrational structure, whereas pronounced ground-
state rotational bands with R4/2 = E(4+

1 )/E(2+
1 ) ≈ 3.33 are

found in 226–232Th. For the nuclei 224,226Th, located in the
transitional region between quadrupole vibrators and axially
deformed rotors, the experimental R4/2 values are 2.90 and
3.14, respectively, the former being close to the value 2.91
predicted by the X(5) model [65] for reflection-symmetric
axially-deformed nuclei. In the calculation R4/2 = 3.22 and
3.26 for 224,226Th, respectively. A similar systematics is
found in the other isotopic chains [Figs. 11(b)–11(d)], that
is, the evolution of quadrupole collectivity characterized
by the lowering of the positive-parity ground-state band.
However, the theoretical predictions for the positive-parity
states overestimate the experimental values. The discrepancies
are larger for the Ra and Ba isotopes because the boson model
space is more restricted in comparison to the neighboring Th
and Sm isotopes.

In the present analysis, however, we are more concerned
with negative-parity states. For the states of the negative-parity
band in Th isotopes the excitation energies display a parabolic
structure centered between 224Th and 226Th [Fig. 12(a)]. The
approximate parabola of 1−

1 states has a minimum at 226Th, in
which the octupole deformed minimum is most pronounced
(cf. Figs. 1 and 9). Starting from 226Th the energies of negative-
parity states systematically increase and the band becomes
more compressed. A rotational-like collective band based on
the octupole vibrational state, i.e., the 1−

1 band head, develops.
For the Ra isotopes shown in Fig. 12(b) a similar trend, that

is, an approximate parabola of negative-parity yrast states, is
predicted particularly for states with spin Jπ = 1−, 3− and 5−.
One notices that the parabolic dependence is not as pronounced
as in the Th case. The model predicts that the excitation energy
of the 1−

1 state is lowest in 224Ra. This result is consistent
with the evolution of the experimental low-spin negative-parity
states with neutron number [64], and also with the recent
experimental study of stable octupole deformation in 224Ra [6].
Namely, the experimental states 1−

1 (3−
1 ) are observed at 242

(317) keV, 216 (290) keV, and 254 (322) keV, in 222,224,226Ra,
respectively [64]. On the other hand, in both the positive and
negative parity bands some high-spin states, particularly for
the lighter isotopes, are predicted at much higher energies
compared to the data [64]. One of the reasons is certainly the
restricted valence space from which boson states are built. The
recent Hartree-Fock-Bogoliubov calculations [14,17], based
on the Gogny D1S and D1M [66] functionals, reproduced the
parabolic-like dependence of the 1−

1 state in the Ra isotopes as
a function of N , similarly to the result obtained in the present
study.

For the Sm [Fig. 12(c)] and Ba [Fig. 12(d)] isotopes,
the mass dependence of negative-parity yrast states is more
monotonic. For Sm the calculated excitation energies of both

positive- and negative-parity states show a very weak variation
with mass number starting from 152Sm or 154Sm. The octupole
vibrational structure reflects the systematics of the deformation
energy surfaces shown in Fig. 3. The yrast states of Ba isotopes
display no significant structural change starting from 144Ba or
146Ba, that is, the excitation energies of both positive- and
negative-parity yrast states look almost constant with mass
(neutron) number. Note, however, that the calculated energy
levels for Ba isotopes exhibit a more abrupt change from 144Ba
to 146Ba, especially for higher-spin states. Other EDF-based
approaches have predicted an isotopic dependence of the 1−

1
level of Ba isotopes (decrease in energy from 140Ba to 144Ba
or 146Ba) similar to the present result [14], but also a parabolic
behavior for the Sm chain with a minimum at 150Sm [16],
rather different from the present trend shown in Fig. 12(c) and
from the experimental excitation energies [64].

B. Transition between static octupole deformation
and octupole vibrations

Another indication of a transition between octupole defor-
mation and octupole vibrations for β3-soft potentials is the
odd-even staggering shown in Fig. 13. For both positive and
negative parity, we plot the calculated ratios E(J )/E(2+

1 ) for
the yrast states of 220–232Th, 218–228Ra, 146–156Sm, and 140–150Ba
nuclei as functions of the angular momentum J , in comparison
to data. For Th isotopes with A � 226 the odd-even staggering
is negligible, indicating that positive- and negative-parity states
belong to a single band, that is, the two bands are located close
in energy. The staggering only becomes more pronounced
starting from 228Th, and this means that negative-parity states
form a separate rotational-like collective band built on the
octupole vibrational state. One notices that the predicted
staggering of yrast states is in very good agreement with
data [64]. For the Ra isotopes the staggering becomes visible
starting with 226Ra, but is much less pronounced compared to
the Th nuclei with the same number of neutrons.

Similarly, the odd-even staggering is more pronounced
in Sm than in Ba. For the Sm isotopes the effect becomes
significant starting from 152Sm, but is negligible for A � 150.
Note that 150Sm exhibits the deepest octupole minimum in the
deformation energy surface (Fig. 3). The staggering pattern in
Sm isotopes, shown in Figs. 13(e) and 13(f), appears slightly
different from the one obtained for the Th isotopes [Figs. 13(a)
and 13(b)]. For the latter case the amplitude of the staggering
keeps increasing with mass number, whereas it shows very
little variation in the Sm chain starting from 152Sm. This
feature reflects the fact that the β3-softness of the potential
does not show significant variations between 152Sm and 156Sm.
A similar trend, but with much less prominent staggering, is
observed for the Ba nuclei in Figs. 13(g) and 13(h).

The emergence of octupole vibrational states can be
further analyzed by computing the energy displacement δE(J )
between positive- and negative-parity bands, defined as [9]

δE(J ) = E(J−) − {E((J + 1)+) + E((J − 1)+)}
2

. (14)

For a stable octupole deformed nucleus, in which the positive-
and negative-parity yrast states form an alternating-parity
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band, δE(J ) should be approximately zero. The deviation
from the limit δE = 0 indicates the decoupling of states with
positive and negative parity, thus pointing to the occurrence of
octupole vibrational states.

Figure 14 displays the calculated δE(J ) values for the
four isotopic chains, normalized with respect to the excitation
energy of 2+

1 , as functions of the mass number. The theoretical
values are compared to data from Ref. [64]. As one would
expect, the δE(J )/E(2+

1 ) values begin to show a significant
increase starting from a specific isotope in the Th, Ra, and Sm
chains, that is, from 226Th, 224Ra, and 150Sm, for which a stable
octupole deformation appears on the corresponding DD-PC1
energy surface (cf. Figs. 1–3), and is also reflected in the plot
of excitation energies [cf. Figs. 11(a)–11(c) and 12(a)–12(c)].
For the Ba isotopes, on the other hand, no significant increase
is observed in the variation of the δE(J )/E(2+

1 ) value with
mass number.

C. Systematics of E1 and E3 transitions

In addition to the comparison between the calculated and
the experimental energy spectra, in this section we examine
the E3 and E1 properties, which also provide signatures for
the onset of octupole deformation. In Fig. 15 we display the
isotopic dependence of the B(E3; 3−

1 → 0+
1 ) [panels (a) to (d)]

and B(E1; 1−
1 → 0+

1 ) [panels (e) to (h)] values for 220–232Th,
218–228Ra, 146–156Sm, and 140–150Ba, in comparison to available
data [4–6,64,67–69].

The E3 transition strength, in particular, can be regarded
as a good measure of octupole collectivity [4]. The upper part
of Fig. 15 [panels (a) to (d)] shows that the present calculation

yields B(E3; 3−
1 → 0+

1 ) values that are consistent with the
experimental trend. In the Th, Ra, and Sm isotopic chains
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the theoretical B(E3; 3−
1 → 0+

1 ) values reach a maximum for
226Th, 224Ra, and 150Sm, respectively, that is, for isotopes in
which the octupole deformation minimum is most prominent
(Figs. 1–3). In the Ba chain the theoretical B(E3) values
remain almost constant with increasing neutron number,
reflecting the fact that no shape transition is predicted by the
calculation.

For all the considered isotopic chains, in contrast to the
systematics of the energy surfaces, the excitation spectra, and
the B(E3; 3−

1 → 0+
1 ) values, the calculated B(E1; 1−

1 → 0+
1 )

values exhibit only a monotonic increase as functions of
the mass number. The corresponding experimental values
seem to suggest more significant structural changes in the
isotopic sequences. In fact, only for the 148–154Sm nuclei the
present calculation qualitatively reproduces the experimental
trend in heavier isotopes [Fig. 15(g)]. On the other hand,
much larger B(E1; 1−

1 → 0+
1 ) values, by ≈102−4 compared

to experimental ones, are predicted for the heavier Th and Ra
isotopes, as well as for the Ba nuclei.

There are several possible reasons for the systematic
discrepancy between theoretical and empirical B(E1) values.
Firstly, the choice of the fixed effective charge e1 = 0.01eb1/2

[60] might be too restricted and, in principle, one could allow
a variation of the effective charge with mass number. For the
Ra isotopes [Fig. 15(f)], for instance, a sudden decrease of
the experimental B(E1; 1−

1 → 0+
1 ) value from 222Ra to 224Ra

could reflect a complex change of structure. Such an effect
could easily be absorbed in the variation of the effective
charge. Moreover, the present model considers only isoscalar
properties, that is, there is no distinction between proton

and neutron bosons, whereas for E1 transitions isovector
components could play an important role. Secondly, the form
of the E1 operator T̂ (E1) in Eq. (10) may need to be extended.
In fact, it has been shown that in the sdf IBM two-body terms
should be included in the E1 operator [70]. Such an extension
invokes additional parameters for the E1 operator, but these
would be difficult to determine uniquely. Most likely, however,
the model space of s, d, and f bosons is by construction not
sufficient to describe the E1 systematics. This implies that
the inclusion of the p (Jπ = 1−) boson might be necessary.
Actually, as shown by Otsuka [54], intrinsic wave functions
of quadrupole-octupole deformed nuclei could contain a large
fraction of the dipole nucleon pair. An extension of our model
along these lines could be an interesting subject for a future
study.

In some previous phenomenological sdf (or spdf ) IBM
studies, the B(E1; 1−

1 → 0+
1 ) values for Sm isotopes were

reproduced slightly better than in the present calculation
(see, e.g., [18]). In Ref. [18], however, two-body terms have
been added to the E1 operator. The recent two-dimensional
(2D) GCM calculation for Sm isotopes [16], based on the
Gogny effective interaction, has reproduced the experimental
B(E1; 1−

1 → 0+
1 ) values with a more or less similar level

of agreement as the present work. Other beyond-mean-field
studies of Ra and Ba isotopes [14], and Ra-Th isotopes
[17], that used the collective Hamiltonian approach based
on the Gogny D1S and the BCP functional, and the 2D
GCM approach with the Gogny D1S and D1M interactions,
respectively, have reported results for B(E1; 1−

1 → 0+
1 ) that

are more consistent with the experimental systematics.
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D. Detailed level schemes

To illustrate in more detail the level of quantitative agree-
ment between our microscopic model calculation and data, we
analyze the low-lying energy spectra of positive- and negative-
parity states, the B(E2) values for in-band transitions, and the
interband B(E1) values, for the octupole-deformed nucleus
226Th (Fig. 16), and the octupole-soft nucleus 230Th (Fig. 17).

The level scheme of 226Th (Fig. 16) shows that the lowest
negative-parity band (composed of one-f -boson states) is
located close in energy to the ground-state positive-parity band
(comprised of positive-parity bosons only, that is, Nf = 0).
One notices that the lowest positive- and negative-parity bands
form a single, alternating-parity band, starting with angular
momentum J = 5. Overall, a very good agreement between
theory and experiment is obtained for the excitation spectrum
of 226Th. Strong E1 transitions are predicted from odd-J
states of the negative-parity band to the even (J − 1) states of
the ground-state positive-parity band, in agreement with data.

However, the calculated E1 transitions in the inverse direction
[from even-J to the odd (J − 1) states] are considerably
weaker, whereas the experimental values are of the same
order as for the former transitions. The opposite systematics
is predicted for the E1 transitions between the negative-parity
band Nf = 1 and the second-lowest positive-parity band Nf =
2 (built on two-f -boson states), that is, the E1 transitions from
even-J states to the odd (J − 1) states dominate.

For the nucleus 230Th we notice in Fig. 17 that the present
calculation reproduces very well the experimental [64] energy
levels of the positive-parity ground-state (Kπ = 0+) band,
including the E2 transition strengths, and those of the two
lowest (Kπ = 0− and 1−) negative parity bands. Compared to
226Th, the band Kπ = 0− is found at much higher excitation
energy, consistent with the picture of octupole vibrations.
However, the theoretical positive-parity bands built on the
0+

2 state and the 2+
3 state, are predicted high above their

experimental counterparts. The reason could be the too large
value for the quadrupole-quadrupole interaction strength κ2,
which is relevant for the band-head energies of the side bands.
In fact, the present κ2 value is more than three times larger
than the one used in the previous IBM phenomenological
study [22]. This value reflects the pronounced quadrupole
deformation minimum predicted by the RHB energy surface.
E2 transitions between the states of the positive-parity ground-
state band and the two side bands built on 0+

2 and 2+
3 vanish,

and this means there is no mixing between the corresponding
configurations. In fact, for 230Th the IBM model predicts that
the states in the ground-state are composed of s and d bosons
only, that is, Nf = 0, whereas those of the two positive-parity
side bands are built on two-f -boson states (Fig. 17). The
low-lying negative-parity states are, of course, of one-f -boson
nature.

E. The nucleus 224Ra

Finally, we compare the results of the present microscopic
calculation with very recent data for the octupole deformed
nucleus 224Ra, obtained in the Coulomb excitation experiment
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TABLE I. Comparison between experimental [6] and theoretical
B(Eλ) values for transitions in 224Ra (in Weisskopf units). All
transitions shown in the table, except for the E2 transition from
the band head of the band built on the 2+

2 state to the 0+ ground state,
are between yrast states.

Expt. (W.u.) Theor. (W.u.)

B(E2; 2+ → 0+) 98 ± 3 109
B(E2; 3− → 1−) 93 ± 9 71
B(E2; 4+ → 2+) 137 ± 5 152
B(E2; 5− → 3−) 190 ± 60 97
B(E2; 6+ → 4+) 156 ± 12 159
B(E2; 8+ → 6+) 180 ± 60 153
B(E2; 2+

2 → 0+) 1.3 ± 0.5 0
B(E3; 3− → 0+) 42 ± 3 42
B(E3; 1− → 2+) 210 ± 40 85
B(E3; 3− → 2+) <600 46
B(E3; 5− → 2+) 61 ± 17 61
B(E1; 1− → 0+) <5 × 10−5 2.0 × 10−3

B(E1; 1− → 2+) <1.3 × 10−4 1.1 × 10−3

B(E1; 3− → 2+) 3.9+1.7
−1.4 × 10−5 3.7 × 10−3

B(E1; 5− → 4+) 4+3
−2 × 10−5 5.0 × 10−3

B(E1; 7− → 6+) <3 × 10−4 5.8 × 10−3

of Ref. [6]. Table I lists all the experimental B(Eλ) values
included in Ref. [6], in comparison with our model results.
For the E2 transition rates a very good agreement is obtained
between the experimental and the calculated values, possibly
with the exception of the 5− → 3− transition which is underes-
timated in the calculation. We also note the nice agreement of
the B(E3; J → J − 3) values, but the calculated B(E3; 1− →
2+) is considerably smaller than the experimental value. On
the other hand, the theoretical B(E1) values are systematically
too large, typically by 101–102, when compared with data.
Possible reasons for this discrepancy have been addressed in
Sec. IV C.

In Fig. 18 we plot the E2 and E3 intrinsic moments
determined from the B(E2) and the B(E3) values listed in
Table I, using the relation given in Eq. (13). One notes a
staggering in the calculated Q2(J → J − 2) values, and their
average value ≈600 efm2 is consistent with the measured value
[6]. The same observation applies to the octupole intrinsic
moment Q3. The mean value of the three Q3 moments is
approximately 2500 efm3, in agreement with experiment.

V. SUMMARY AND CONCLUDING REMARKS

In the present study we have performed a microscopic
analysis of octupole shape transitions in four isotopic chains
characteristic for two regions of octupole deformation and
collectivity: Th, Ra, Sm, and Ba. As a microscopic input
we have used the axial quadrupole-octupole deformation
energy surfaces calculated employing the relativistic Hartree-
Bogoliubov model based on the universal energy density
functional DD-PC1 which has, of course, not been specif-
ically adjusted to octupole deformed nuclei. By mapping
the deformation-constrained microscopic energy surfaces onto
the equivalent sdf IBM Hamiltonian, that is, onto the
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FIG. 18. (Color online) Comparison between the experimental
[6] and calculated quadrupole and octupole intrinsic moments of
224Ra, as functions of the angular momentum J π (π = +1 and −1
for J even and odd, respectively).

corresponding expectation values of the IBM Hamiltonian in
boson coherent states, the Hamiltonian parameters have been
determined without any specific adjustment to experimental
spectra. The mapped sdf IBM Hamiltonian has been used
to calculate low-energy spectra and transition rates for both
positive- and negative-parity states of the four sequences of
isotopes. The systematics of the axially-symmetric (β2,β3)
energy surface (from Figs. 1 to 8), the average value of the oc-
tupole deformation 〈β3〉 (Fig. 9), the variation of the resulting
Hamiltonian parameters (Fig. 10), the calculated excitation
spectra (Figs. 11–14), and the E3 transition rates (Fig. 15),
show a consistent picture of evolution of octupole correlations
in the two regions of medium-heavy and heavy nuclei.

The microscopic DD-PC1 energy surfaces suggest a tran-
sition from nonoctupole (quadrupole vibrational) to stable
octupole deformed, and to octupole vibrations characteristic
for β3-soft potentials, in the Th, Ra, and Sm isotopic
chains. Among all nuclei considered in this work, the Th
isotopes appear to present the best case for the evolution
of octupole correlations. The calculated excitation spectra of
all considered isotopes exhibit a decrease in energy of states
in the positive-parity ground-state band with the increase of
the neutron number (Fig. 11), in agreement with available
data. The evolution of the ground-state bands with neutron
number clearly shows the transition from spherical vibrators
to quadrupole deformed rotors. For the Th and the Ra isotopes
(Fig. 12) the states in the lowest negative-parity band display a
parabolic energy dependence on the mass number, with energy
minima at 226Th and 224Ra that correspond to stable octupole
deformations, consistent with the evolution of the microscopic

024312-14



MICROSCOPIC DESCRIPTION OF OCTUPOLE SHAPE- . . . PHYSICAL REVIEW C 89, 024312 (2014)

energy surfaces (Figs. 1 and 2). The approximate parabolas of
low-spin negative-parity states can be identified as signatures
of the transition from stable octupole deformation to octupole
vibrations. In the case of Sm and Ba isotopes, the evolution of
the lowest negative-parity band is much more moderate, and
the excitation energies of negative-parity states show almost
no variation for heavier isotopes. This means that the β3-soft
octupole potentials do not change with neutron number, and
the spectra are those of octupole vibrators.

For most nuclei considered in the present analysis the IBM
model based on microscopic deformation energy surfaces
produces results in a reasonable agreement with available
experimental spectroscopic properties. Nevertheless, consid-
erable disagreement has been found for higher-spin states,
particularly for those nuclei for which the space of boson
states appear to be too restricted. In particular, the present
model calculation has apparently failed in the description

of the E1 transition rates [Figs. 15(e)–15(h) and 16]. We
have discussed several possible reasons: (i) the oversimplified
parametrization of the E1 effective charge, (ii) the restricted
form of the adopted E1 operator, and (iii) the insufficient sdf
model space that could be extended by the inclusion of other
types of bosons. A complete analysis of E1 systematics will
be the topic of a future study.
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(2008).
[63] W. Long, J. Meng, N. Van Giai, and S.-G. Zhou, Phys. Rev. C

69, 034319 (2004).
[64] Brookhaven National Nuclear Data Center,

http://www.nndc.bnl.gov.
[65] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[66] S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett.
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