1,587 research outputs found

    Comparing Factor Models in European Stock Market

    Get PDF
    How to construct portfolios is a vital issue for investors and the effective use of asset pricing models can better achieve the goal of risk diversification. Given the large amount of asset pricing models, this paper intended to select a benchmark model that performs the best among a set of prominent asset pricing models in European stock markets. The candidate models included CAPM, the three-factor (FF3), five-factor, and six-factor (FF6) models of Fama and French (1993, 2015, 2018), the four-factor model of Carhart (1997), and a variant of FF6 that contains a more-timely value factor. This paper compared their abilities to explain size-B/M and size-momentum portfolios based on average absolute alphas and average absolute t-statistics. The empirical results showed that FF6 and its variant in general outperforms the other competing models

    Faster Random Walks By Rewiring Online Social Networks On-The-Fly

    Full text link
    Many online social networks feature restrictive web interfaces which only allow the query of a user's local neighborhood through the interface. To enable analytics over such an online social network through its restrictive web interface, many recent efforts reuse the existing Markov Chain Monte Carlo methods such as random walks to sample the social network and support analytics based on the samples. The problem with such an approach, however, is the large amount of queries often required (i.e., a long "mixing time") for a random walk to reach a desired (stationary) sampling distribution. In this paper, we consider a novel problem of enabling a faster random walk over online social networks by "rewiring" the social network on-the-fly. Specifically, we develop Modified TOpology (MTO)-Sampler which, by using only information exposed by the restrictive web interface, constructs a "virtual" overlay topology of the social network while performing a random walk, and ensures that the random walk follows the modified overlay topology rather than the original one. We show that MTO-Sampler not only provably enhances the efficiency of sampling, but also achieves significant savings on query cost over real-world online social networks such as Google Plus, Epinion etc.Comment: 15 pages, 14 figure, technical report for ICDE2013 paper. Appendix has all the theorems' proofs; ICDE'201

    Inkjet-printed conductive patterns for physical manipulation of audio signals

    Get PDF
    In this demo paper, we present the realization of a completely aesthetically driven conductive image as a multi-modal music controller. Combining two emerging technologies - rapid prototyping with an off-the-shelf inkjet printer using conductive ink and parametric graphic design, we are able to create an interactive surface that is thin, flat, and flexible. This sensate surface can be conformally wrapped around a simple curved surface, and unlike touch screens, can accommodate complex structures and shapes such as holes on a surface. We present the design and manufacturing flow and discuss the technology behind this multi-modal sensing design. Our work seeks to offer a new dimension of designing sonic interaction with graphic tools, playing and learning music from a visual perspective and performing with expressive physical manipulation

    Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    Get PDF
    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidity sensors by spin-coating conductive polymer on sensor substrates and integrating the design with an embedded system. The humidity sensor was tested in a two-point probe and exhibits the I-V profile of a diode. We demonstrated a working humidity sensor with an impedance variance of 30 kΩ from 99% to 58% RH within 300 seconds under a 1.4 volt bias.Massachusetts Institute of Technology. Media Laborator

    Experiences and challenges in deploying potentially invasive sensor systems for dynamic media applications

    Get PDF
    This paper describes a series of projects that explore a set of dynamic media applications built upon a potentially invasive sensor system - the Ubiquitous Media Portal, featuring high-resolution video and audio capture with user ID/tracking capabilities that we installed throughout our facility. In addition to sensors, the portals provide a display and loudspeaker to locally display information or manifest phenomena from virtual worlds. During an eight-month long period, we implemented four different applications to explore acceptance by our buildingwide users. Our results provide insight into how different levels of information presentation and perceived user control can influence the user acceptance and engagement with such sensor platforms in ubiquitous deployments.Things That Think ConsortiumNokia Research Cente

    The consistency test on the cosmic evolution

    Full text link
    We propose a new and robust method to test the consistency of the cosmic evolution given by a cosmological model. It is realized by comparing the combined quantity r_d^CMB/D_V^SN, which is derived from the comoving sound horizon r_d from cosmic microwave background (CMB) measurements and the effective distance D_V derived from low-redshift Type-Ia supernovae (SNe Ia) data, with direct and independent r_d/D_V obtained by baryon acoustic oscillation (BAO) measurements at median redshifts. We apply this test method for the Lambda-CDM and wCDM models, and investigate the consistency of the derived value of r_d/D_V from Planck 2015 and the SN Ia data sets of Union2.1 and JLA (z<1.5), and the r_d/D_V directly given by BAO data from six-degree-field galaxy survey (6dFGS), Sloan Digital Sky Survey Data Release 7 Main Galaxy Survey (SDSS-DR7 MGS), DR11 of SDSS-III, WiggleZ and Ly-alpha forecast surveys from Baryon Oscillation Spectroscopic Data (BOSS) DR-11 over 0.1<z<2.36. We find that r_d^CMB/D_V^SN for both non-flat Lambda-CDM and flat wCDM models with Union2.1 and JLA data are well consistent with the BAO and CMB measurements within 1-sigma CL. Future surveys will further tight up the constraints significantly, and provide stronger test on the consistency.Comment: 11 pages, 5 figures, 4 tables. Version accepted by PR

    A cuttable multi-touch sensor

    Get PDF
    We propose cutting as a novel paradigm for ad-hoc customization of printed electronic components. As a first instantiation, we contribute a printed capacitive multi-touch sensor, which can be cut by the end-user to modify its size and shape. This very direct manipulation allows the end-user to easily make real-world objects and surfaces touch-interactive, to augment physical prototypes and to enhance paper craft. We contribute a set of technical principles for the design of printable circuitry that makes the sensor more robust against cuts, damages and removed areas. This includes novel physical topologies and printed forward error correction. A technical evaluation compares different topologies and shows that the sensor remains functional when cut to a different shape.Deutsche Forschungsgemeinschaft (Cluster of Excellence Multimodal Computing and Interaction, German Federal Excellence Initiative

    Signal estimation in cognitive satellite networks for satellite-based industrial internet of things

    Get PDF
    Satellite industrial Internet of Things (IIoT) plays an important role in industrial manufactures without requiring the support of terrestrial infrastructures. However, due to the scarcity of spectrum resources, existing satellite frequency bands cannot satisfy the demand of IIoT, which have to explore other available spectrum resources. Cognitive satellite networks are promising technologies and have the potential to alleviate the shortage of spectrum resources and enhance spectrum efficiency by sharing both spectral and spatial degrees of freedom. For effective signal estimations, multiple features of wireless signals are needed at receivers, the transmissions of which may cause considerable overhead. To mitigate the overhead, part of parameters, such as modulation order, constellation type, and signal to noise ratio (SNR), could be obtained at receivers through signal estimation rather than transmissions from transmitters to receivers. In this article, a grid method is utilized to process the constellation map to obtain its equivalent probability density function. Then, binary feature matrix of the probability density function is employed to construct a cost function to estimate the modulation order and constellation type for multiple quadrature amplitude modulation (MQAM) signal. Finally, an improved M 2 M ∞ method is adopted to realize the SNR estimation of MQAM. Simulation results show that the proposed method is able to accurately estimate the modulation order, constellation type, and SNR of MQAM signal, and these features are extremely useful in satellite-based IIoT
    • …
    corecore