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Signal Estimation in Cognitive Satellite Networks
for Satellite-Based Industrial Internet of Things

Mingqian Liu, Member, IEEE, Nan Qu, Jie Tang, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,
Hao Song, and Fengkui Gong, Member, IEEE

Abstract—Satellite Industrial Internet of Things (IIoT) plays
an important role in industrial manufactures without requiring
the support of terrestrial infrastructures. However, due to the
scarcity of spectrum resources, existing satellite frequency bands
cannot satisfy the demand of IIoT, which have to explore other
available spectrum resources. Cognitive satellite networks (CSNs)
are promising technologies and have the potential to alleviate the
shortage of spectrum resources and enhance spectrum efficiency
by sharing both spectral and spatial degrees of freedom. For
effective signal estimations, multiple features of wireless signals
are needed at receivers, the transmissions of which may cause
considerable overhead. To mitigate the overhead, part of pa-
rameters, such as modulation order, constellation type, signal
to noise ratio (SNR), could be obtained at receivers through
signal estimation rather than transmissions from transmitters
to receivers. In this paper, a grid method is utilized to process
the constellation map to obtain its equivalent probability density
function. Then, binary feature matrix of the probability density
function is employed to construct a cost function to estimate the
modulation order and constellation type for multiple quadrature
amplitude modulation (MQAM) signal. Finally, an improved
M2M∞ method is adopted to realize the SNR estimation of
MQAM. Simulation results show that the proposed method is
able to accurately estimate the modulation order, constellation
type and SNR of MQAM signal, and these features are extremely
useful in satellite-based IIoT.

Index Terms—Industrial Internet of Things, cognitive satellite
networks, modulation order estimation, constellation type esti-
mation, signal to noise ratio estimation

I. INTRODUCTION

SAtellite industrial Internet of Things (IIoT) possesses
many appealing attributes, including wide-area coverage,

long-distance transmissions, and remote-area information col-
lections, compared to traditional ground IIoT [1]. Recently,

This work was supported in part by the National Natural Science Foundation
of China under Grant 61501348 and Grant 61801363, in part by the Shaanxi
Provincial Key Research and Development Program Grant 2019GY-043, in
part by the Joint Fund of Ministry of Education of the People’s Republic
of China under Grant 6141A02022338, in part by the China Postdoctoral
Science Foundation under Grant 2017M611912, in part by the 111 Project
under Grant B08038, and in part by the China Scholarship Council under
Grant 201806965031. (Corresponding author: Jie Tang.)

M. Liu, N. Qu and F. Gong are with the State Key Laboratory of Integrated
Service Networks, Xidian University, Shaanxi, Xi’an 710071, China (e-mail:
liu@mail.xidian.edu.cn; nqu@stu.xidian.edu.cn; fkgong@xidian.edu.cn).

J. Tang is with the school of Electronic and Information Engineering,
South China University of Technology, Guangzhou 510641, China. (e-mail:
eejtang@scut.edu.cn)

Y. Chen is with the School of Engineering, University of Warwick,
Coventry, West Midlands United Kingdom of Great Britain and Northern
Ireland CV4 7AL (e-mail: Yunfei.Chen@warwick.ac.uk)

H. Song is with the Bradley Department of Electrical and Com-
puter Engineering, Virginia Tech, Blacksburg 24060, VA, USA (e-mail:
haosong@vt.edu).

with the rapid development of wireless and mobile technolo-
gies, the conflict between the explosive growth and the scarcity
of spectrum resources has become more and more serious
[2]-[4]. As a precious and costly resource, the licenses of
which are granted by governments. Therefore, it is challenging
for satellite IIoT to obtain an adequate licensed spectrum
to meet the demand of broadband satellite services [5]-[8].
To cope with that, cognitive satellite networks (CSNs), as
a potential solution, have been developed for the effective
utilization of unlicensed bands and sharing spectrum resources
with other wireless systems, like terrestrial cellular networks
[9]. The spectrum access opportunities for secondary users are
supposed to be assured within the bearable interference level
of the primary user [10]. The main problem to guarantee the
quality of service (QoS) of CSNs is to handle the interference
across two networks. Thus, the signal estimation of both
primary user and secondary user is vital for CSNs.

Multiple quadrature amplitude modulation (MQAM) signals
have many advantages, such as high spectrum efficiency
and strong noise tolerance, which can be used in satellite
communications to achieve high transmission efficiency with-
out increasing bandwidth resources [11]. Thus, the second-
generation satellite digital video broadcasting (DVB-S2) has
already increased the optional modulation order to 16 and 32
[12]. Moreover, 16QAM and 16APSK modulations are also
recommended in DVB-SH [13]. China’s digital TV terrestrial
broadcasting system even uses higher-order modulations such
as 16QAM, 32QAM, and 64QAM. As a specialized and novel
modulation method, MQAM signals have derived many new
constellation types. For example, the United States Department
of Defense proposed a constellation mapping of circular QAM
modulation in Appendix D of the military standard MIL-STD-
188-110C issued at the end of 2011, referred to as 110C [14].
In 2016, Farbod Kayha proposed a circular constellation QCI
[15], which is mapped by a square constellation.

For the effective demodulation and decoding of MQAM
signals, some signal parameters are required, including mod-
ulation order, constellation type, and signal to noise ratio
(SNR) [16]-[17]. Some of these modulation parameters could
be obtained through the feedback from transmitters. The trans-
missions of these parameters may cause severe overhead, and
dedicated control channels need to be reserved and designed
for these parameter transmissions. Hence, estimating signal
parameters at the receiver side would be a more realistic
and applicable way [18]. Unfortunately, as a complicated
modulation method, signal estimations of the MQAM signal
are very challenging. Furthermore, for preferred modulation
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performance, the accuracy of signal estimations is critical,
as estimated parameters directly determine the selection of
demodulation algorithms. Therefore, in this paper, we focus
on exploring the non-data assisted estimation methods of the
aforementioned signal parameters for MQAM signals in CSNs.

Due to the benefit of no training data needed to sent from
transmitters, on-data assisted estimations are more suitable
for batch transmission of data. Some research achievements
have been published for non-data assisted signal estimations.
The authors in [19] used nuclear density estimation to iden-
tify square 4/16/64QAM signals. High-order cumulants and
signal cyclostationarity are proposed for 4/16/64QAM signal
estimations in [20]. The authors in [21] converted the time-
frequency of the Wigner-Ville distribution (WVD) into an
incoming signal to calculate the complexity metric of the
signal, Renyi entropy, based on which the Dempster-Shafer
theory is used to estimate the signal. A high-order cumulant-
based estimation method is introduced in [22] to recognize
the 16/64QAM signals. In [23], the constellation diagram is
used to detect MQAM signals. Notably, most recent work on
MQAM signals is limited to square or cross-shaped QAM
signals, which may incur the fact that these methods may not
be able to work out in 110C and QCI circular QAM signals.
Moreover, there is still no work done on constellation type
estimations. The existing SNR estimation methods for MQAM
signals with constellation type of square and cross are based
on the knowledge of modulation order and constellation type.
The authors in [24] proposed a time-varying autocorrelation
function (TVAF) to estimate SNR. In [25], and improved
vector error method is put forward to estimate SNR of 4QAM
signals. In [26], the M2M∞ method is employed to generate
new monotonic statistics, combined with the look-up table
method to estimate SNR for the square constellation MQAM
signals. The authors in [27] proposed an improved SNR
estimation method to achieve robust adaptive beamforming.
However, these SNR estimation methods cannot be applicable
for all types of constellations, which require prior information,
such as the modulation order and the constellation type.

In this paper, to mitigate the overhead, a novel non-data
method is proposed using a grid method and binary feature
matrix to estimate modulation order, constellation type, and
SNR in CSNs for satellite-based IIoT. The main creative
contributions of this paper can be summarized as follows:

• According to any received signal sequences, the prob-
ability density function of the constellation points is
estimated by the introduced grid method.

• The cross section and the peak proportional coefficient
are employed to obtain the binary characteristic matrix
of the probability density function for further process.

• Based on estimated parameters, the cost function is
defined to estimate the constellation type, which contains
both modulation order and constellation type.

• SNR is estimated by using the improved M2M∞ method
and the look-up table method.

The rest of this paper is organized as follows. The system
model considered in this paper is presented in Section II. The
modulation order and the constellation type estimation method

is proposed in Section III. In Section IV, a SNR estimation
method is introduced. Section V shows the numerical results
to verify the estimation performance. Finally, Section VI
concludes the whole paper.

II. SYSTEM MODEL

An uplink cognitive satellite terrestrial network used in
IIoT is considered, where the terrestrial network shares the
spectrum with the satellite network [9]. Let q (t) denote
received signals in CSN for satellite-based IIoT, which is given
by

q (t) =
∑

c (t)h (t− nTs) + n (t) , (1)

where n (t) represents additive white Gaussian noise with a
bilateral power spectral density of σ0/2, h (t− nTs) denotes
a single baseband waveform with a width of Ts. c (t) is the
MQAM signal, which is expressed as

c (t) =
∑
n

An cos (ωct+ φn), (2)

where An is the amplitude of baseband signal. The orthogonal
representation of the MQAM signal is

c (t) =
∑
n

An cosφn cosωct+
∑
n

An sinφn sinωct. (3)

Assuming that {
Xn = An cosφn,
Yn = An sinφn,

(4)

so (3) can be rewritten as

c (t) =
∑
n

Xn cosωct+
∑
n

Yn sinωct

= IM cosωct+QM sinωct, (5)

where M represents the modulation order, IM and QM are the
Amplitude on its in-phase and quadrature components, respec-
tively, and its value range is {±a (2i+ 1) |i = 0, 1, ...,K },
a denotes the amplitude factor. The constellation diagram
represents the distribution of the end points of the signal
vector, which can be used to visually represent the multi-digit
digital modulated signal. For MQAM signal, the coordinates
of the constellation point on the complex plane are (IM , QM ).
K = log2 (M/4) in square and cross-shaped MQAM signal
in a constellation diagram, and there is no constellation point
at the vertices of the square outline in the cross-shaped
constellation.

The 110C-MQAM modulation uses a circular constellation
mapping to achieve a better peak-to-average ratio without
sacrificing the pseudo-Gray code characteristics of the square
constellation. Meanwhile, the number of modulus values of
the constellation corresponding to QCI-MQAM modulation is
relatively small, which can better resist nonlinear distortion in
satellite communication.
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III. MODULATION ORDER AND CONSTELLATION TYPE
ESTIMATION OF MQAM FOR SATELLITE-BASED IIOT

A. Probability Density Function Estimation of Constellation
Points

The reconstruction of the constellation is based on the
recovered baseband signal, which can be expressed as

r (t) = q (t)⊗ h∗ (−t) =
√
Ss (t) +

√
Nn′ (t) , (6)

where ⊗ represents convolution, S is the signal power,
and N is the noise power. s (t) =

∑
c (t)h′ (t− nTs),

h′ (t) = h (t)⊗h∗ (−t) is raised cosine function. and n′ (t) =
n (t)⊗ h∗ (−t) is the noise element. Suppose the coordinates
of each constellation point in the received sequence are
(riI1, riQ1) , i = 1, 2, ..., L, where L represents the number of
constellation points received. The power normalization factor
of the constellation point is

PNorm =

√√√√√ L∑
i=1

(
r2iI1 + r2iQ1

)
L

, (7)

so the power normalized constellation point coordinate is
(riI2, riQ2) =

(
riI1

PNorm
,

riQ1

PNorm

)
. The average power of con-

stellation points is PQAM = 1. According to the definition of
SNR, the SNR of the received signal can be expressed as

SNR =
S

N
=

PQAM

2σ0
2

=
1

2σ0
2
, (8)

where σ0 denotes the unilateral power spectral density of
Gaussian noise.

Set the origin to coordinate correction, we can get the origin
coordinates

O (ox, oy) = O

(
1

L

L∑
i=1

riI2,
1

L

L∑
i=1

riQ2

)
. (9)

The coordinates of the constellation points after coordinate
correction are ri (riI , riQ), riI = riI2 − ox, riQ = riQ2 − oy ,
where i = 1, 2, ..., L. The i-th constellation point after power
normalization and coordinate correction ri (riI , riQ) can be
expressed as

ri = si + vi, i = 1, 2, ..., L, (10)

where si is the constellation point sent by the sender, and its
coordinates are (xk, yk). vi denotes the effect of additive white
Gaussian noise on the constellation. L represents the number
of constellation points received.

The probability density function of the MQAM signal
constellation is a continuous function, and the received signal
constellation is discrete. The probability density function can
be obtained by continuating discrete points. Assuming that
the received signal is long enough, the probability density
function of the MQAM signal can be estimated using the
grid method. The coordinates of the signal constellation point
ri is (riI , riQ), the length of the received signal is L. Con-
struct a square grid whose x-axis and y-axis are both set
from −rI to rI , where rI = max (|riI | , |riQ|). Define the
mesh density Meshnum as the number of meshes divided

in a single direction, that is, the mesh map divided in the
Meshnum ∗Meshnum determined area, each mesh size is

Meshsize =
2rI

Meshnum
. (11)

The mesh is equivalent to the xoy coordinate plane, and the
coordinates in the coordinate plane can be expressed as , then
the function value of each point in the plane is

g (xp, yp) =
1

L

∑
r′iI ∈ (xp, xp +Meshsize)
r′iQ ∈ (yp, yp +Meshsize)

1. (12)

For a constellation points series ri (riI , riQ) where i =
1, 2, ..., L, the continuous probability density function can be
estimated with

g (x, y) =
Meshnum2∑

p=1

g (xp, yp). (13)

where g (xp, yp) is constructed with (12).
Using the grid method to estimate the probability density

function of constellation points, the key part is the selection of
grid density. The larger the matrix of the estimated probability
density function is, the higher the complexity of the subse-
quent algorithm is. If the mesh density is too small, the reso-
lution will be too low, which will cause the probability density
function estimation value to not characterize the constellation
of the modulation order too large, resulting in estimate errors.
Since the number of received constellation points is limited,
the accuracy of the estimated probability density function
is limited. It is known from the law of large numbers that
when the number of constellation points approaches infinity,
the probability density function estimated from continuous
discrete points will infinitely approach the probability density
function of the standard constellation diagram. By knowing
the geometric distribution of the constellation diagram, each
constellation point in any constellation type is symmetric about
the x-axis, the y-axis, and the origin. In this paper, a data reuse
method is adopted to estimate the probability density function
in a more accurate way. When the coordinates of a certain
constellation point (riI , riQ) is obtained after the coordinate
correction, its mirror image multiplexed data coordinates are
(−riI , riQ), (riI ,−riQ) and (−riI ,−riQ).

B. Feature Extraction based on Constellation Points Proba-
bility Density Function

After estimating the probability density function of the
constellation point, the probability density function graph is
processed to obtain a binary matrix that can characterize the
modulation order of the signal and the constellation type. It is
divided into two steps: 1) the determination of the grid theory
boundary; 2) the acquisition of the binary feature matrix of
the probability density function.

1) Determination of the Grid Theory Boundary: First, this
paper assumes that the probability density function of the re-
ceived signal points conforms to the two-dimensional Gaussian
mixture model. Under the one-dimensional normal curve, the
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area of a certain interval on the horizontal axis reflects the per-
centage of the number of cases in the interval as a percentage
of the total number of cases, that is, the probability that the
variable value falls within the interval. In probability theory,
we refer to an event with a probability close to zero as a small
probability event, indicating that it occurs very frequently in
a large number of repeated experiments. In a one-dimensional
normal distribution f ′ (x) = 1√

2πσ2
0

exp
{
− (x−µ)2

2σ2
0

}
, the

probability of x falling outside (µ− 3σ, µ+ 3σ) is less than 3
×10−5. In practice, it is often believed that the corresponding
event will not happen. Basically, the interval can be regarded
as the actual value range of the random variable. This is called
the ”3σ” principle of normal distribution.

In a two-dimensional normal distribution, the volume under
the surface reflects the probability that the variable value falls
within the interval, which can be expressed as

f ′ (x, y) =
1

2πσ0
2
exp

{
− (x− x0)

2
+ (y − y0)

2

2σ0
2

}
, (14)

where (x0, y0) represents the center of the circle, r denotes
the radius, and the volume covered under the surface is

V (r) =

∫ r

0

dV = 1− exp

{
− r2

2σ2
0

}
. (15)

In this paper, when the probability is less than ε, the cor-
responding event will not occur in the actual problem. Let
V (r0) = 1− ε, the grid theory boundary determination is mapmin = min

k=1,2,...,M
(xk, yk)− σ0

√
−2 ln ε,

mapmax = max
k=1,2,...,M

(xk, yk) + σ0

√
−2 ln ε, (16)

where (xk, yk) represents the coordinates of the k-th transmit-
ted constellation point.

2) Binary Feature Matrix of Probability Density Function:
Assuming that the probability density function of the received
signal points conforms to the two-dimensional Gaussian mix-
ture model, the probability density function of all constellation
points is expressed as

f (x, y) =

M∑
k=1

πkfk (x, y), (17)

where M represents the modulation order, fk (x, y) =
1

2πσ0
2 exp

{
− (x−xk)

2+(y−yk)
2

2σ0
2

}
, and (xk, yk) denotes the co-

ordinates of the k-th transmission constellation point. Assume
that each constellation point has the same probability of
emission, then πk=

1
M , k = 1, 2, ...,M .

As shown in Fig. 1, when the SNR is not too low, the
probability density function of the constellation point should
have M local peaks. Each peak consists of two parts, one
is the peak of the probability density function corresponding
to the constellation point, and the other part is the trailing
superposition of the probability density function corresponding
to the remaining points. The local peak can be expressed as

Fmax =

1 +
M∑

i=1,i̸=k

exp
{
− (xi−xk)

2+(yi−yk)
2

2σ0
2

}
M2πσ0

2
. (18)

Fig. 1. The probability density function of the constellation point of square
16QAM and the section of its local peak

In order to estimate the number of local peaks and con-
stellation type by using the probability density function, a
certain section f (x, y) = pFmax is used to characterize the
constellation type, where p is the peak scale factor. And the
binary real points can be obtained by

g (bxi, byi) ≥ f (x, y) . (19)

When the transmit power is constant, taking a fixed ε, as the
SNR increases, σ0

√
−2 ln ε decreases. That is, for a certain

transmission constellation point, the probability density func-
tion of other transmitting constellation points has a function
value of approximately 0 at this point. The section can be
approximated by M circles and M is the modulation order.
Each circle is centered on the sending constellation point, and
its radius can be expressed as

r =
√
−2σ2

0 ln (2πMσ2
0pFmax). (20)

Therefore, the binary feature matrix is extracted after obtaining
the probability density function by the grid method, and the
theoretical value of the true value points is

BinV al = Meshnum2 ∗ η, (21)

where Meshnum denotes the mesh density and η is the true
value scale factor, which is expressed as

η =
π
[
−2σ0

2 ln
(
2πMσ0

2pFmax

)]
(mapmax −mapmin)

2 . (22)

C. Modulation Order and Constellation Type Estimation
Based on Subtractive Clustering

1) Clustering Algorithm and Cost Function: The Nb truth
point coordinates in the binary real points are expressed as
Bi (bxi, byi) , i = 1, 2, ..., Nb. The binary clusters are subjected
to subtracting clustering under different clustering radii rk′ ,
and cluster centers at different cluster radii are obtained, which
can be expressed as (bxk′,i, byk′,i) , i = 1, 2, ..., Nb, k

′ =
1, 2, ..., 5. Coordinate correction and power normalization are
performed on the cluster centers obtained by different clus-
tering algorithms to obtain a new cluster center coordinate
(xk′,i, yk′,i) , i = 1, 2, ..., Nb, k

′ = 1, 2, ..., 5, where
x′
k′,i = bxk′,i − 1

Nb

Nb∑
i=1

bxk′,i,

y′k′,i = byk′,i − 1
Nb

Nb∑
i=1

byk′,i,

(23)
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xk′,i =

x′
k′,i√

x′
k′,i

2+y′
k′,i

2
,

yk′,i =
y′
k′,i√

x′
k′,i

2+y′
k′,i

2
.

(24)

Define the cost function of the constellation type estimation
for MQAM as

Jk,p =
Jak,p

max
p

Jak,p
+

Jbk,p
max

p
Jbk,p

, (25)

where k = 1, 2, ..., 5, p = 1, 2, ..., 14. Jk,p denotes the degree
of similarity between the cluster center obtained by the k-th
cluster radius and the p-th standard constellation map of the
constellation, which are expressed as following

Jak′,k =



Nb∑
i=1

min

(√(
xk′,i − x′′

k,j

)2
+
(
yk′,i − y′′

k,j

)2)
,

M ≤ Nb

M∑
j=1

min

(√(
xk′,i − x′′

k,j

)2
+
(
yk′,i − y′′

k,j

)2)
,

M > Nb

(26)

Jbk′,k =



1
M

Nb∑
i=1

min

(√(
xk′,i − x′′

k,j

)2
+
(
yk′,i − y′′

k,j

)2)
,

M ≤ Nb

1
Nb

M∑
j=1

min

(√(
xk′,i − x′′

k,j

)2
+
(
yk′,i − y′′

k,j

)2)
,

M > Nb

(27)

where
(
x′′

p,j , y
′′
p,j

)
is the standard constellation diagram after

power normalization, p = 1, 2, ..., 14 represent the constel-
lations of 4QAM, 16QAM-square, 16QAM-110C circular,
16QAM-QCI circular, 32QAM-cross, 32QAM-110C circular,
32QAM-QCI circular, 64QAM-square, 64QAM-110C circu-
lar, 64QAM-QCI circular, 128QAM-cross, 256QAM-square,
256QAM-110C circular, 256QAM-QCI circular, respectively.
j = 1, 2, ...,M denotes the corresponding modulation order.
(xk,i, yk,i) is the power normalization result of the cluster
center obtained by the k-th cluster radius of the to-be-identified
constellation, i = 1, 2, ..., Nb, k

′ = 1, 2, ..., 5.
Define the constellation type estimation cost function as

Jk′,k, the constellation type estimation problem can be for-
mulated as

k∗ = argmin
k′=1,2,...,5

Jk′,k, (28)

where k∗ is the parameter that takes Jk′,k to the minimum
value.

Note that both the modulation order and the constellation
type can be estimated by (28) at the same time. In the
construction process of the cost function, both Jak,p and Jbk,p
can measure the similarity between the clustering center of
the constellation to be identified at the k-th cluster radius and
the p-th standard constellation. However, when k is small, the
cluster radius is large, Jak,p will take the minimum value
when p is small. Using Jak,p as a cost function alone, high-
order QAM is easily misjudged as 4/16QAM at high SNR.
When k is larger, the cluster radius is smaller, and Jbk,p

TABLE I
AVERAGE SNR CORRESPONDING TO BER ≤ 10−5

User data rate(bps) Modulation Average SNR (dB)

12800 256QAM 27
11200 128QAM 24
9600 64QAM 21
8000 32QAM 19
6400 16QAM 16
3200 4QAM 9

will take the minimum value when p is larger. Using Jbk,p
alone as a cost function, low-order QAM is easily misjudged
as 256QAM at low SNR. Therefore, after normalizing Jak,p
and Jbk,p in this paper, the new cost function is obtained by
merging them with equal weights.

2) Parameter Selection: In the communication system, the
bit error rate is required, and the maximum bit error rate
cannot exceed a certain specific index. The user data rate is
specified in Appendix C of the military standard MIL-STD-
188-110C. Meanwhile, it is stipulated that under the additive
white Gaussian noise (AWGN) channel, a coding error rate of
not more than 10−5. Since the 110C modulation mode does
not contain 128QAM, according to the average of the SNR
corresponding to 64QAM and 256QAM, the average SNR
corresponding to 128QAM is 24dB. The average SNR for
different modulation orders corresponding to the bit error rate
≤ 10−5is shown in Table I.

The theoretical probability density function is obtained at
the lower limit of the corresponding SNR, and the different
mesh density and peak scale coefficients are obtained to get the
binary feature matrix and clustered. Then find a balance be-
tween computational complexity and estimation performance
and determine the value of Meshnum and p.

IV. SNR ESTIMATION OF MQAM SIGNAL FOR
SATELLITE-BASED IIOT

The constellation point coordinates after power normaliza-
tion and quadratic coordinate correction are rad (riI , riQ) , i =
1, 2, ..., L. [26] is employed the M2M∞ method to estimate
the SNR for the square constellation, which can be expressed
as

ρ̂← LUT
[
T̃β (rad)

]
, (29)

T̃β (rad) =
E
[
R[rad (t)]

2
]

(max {|R [rad (t)]|} − βmin {|R [rad (t)]|})2

+
E
[
S[rad (t)]

2
]

(max {|S [rad (t)]|} − βmin {|S [rad (t)]|})2
,

(30)

where R [•] represents the real part, S [•] denotes the imag-
inary part, β = smax/smin is the ratio of the modulus
of the point where the modulus value is the largest in the
constellation diagram and the point of the point where the
modulus value is the smallest. LUT [•] denotes the look-up
table method. The standard normalized constellation points
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of 14 different constellation types are used to generate each
entry of the table. The above SNR estimation method is suite
for a square constellation. Since the constellation point of
the square constellation does not fall on the coordinate axis,
the denominator max {|S [rad (t)]|} − βmin {|S [rad (t)]|} of
(30) can measure the degree to which the constellation is
affected by noise. The outermost circle of the 110C circular
constellation of 16/64QAM has four constellation points on the
coordinate axis, so that min {|S [rad (t)]|} in the denominator
tends to 0. Although T̃β (rad) monotonically increases, but its
increment is small and tends to be stable as the SNR increases.

When faced with 110C circular constellation of 16/64QAM,
the SNR can be estimated with improved M2M∞ method as
follows:

ρ̂← LUT
[
T̃β (rad)

]
, (31)

T̃β (rad) =
E
[
R[rad (t)]

2
]

(max {|R [rad (t)]|} − βmin {|R [rad′ (t)]|})2

+
E
[
S[rad (t)]

2
]

(max {|S [rad (t)]|} − βmin {|S [rad′ (t)]|})2
,

(32)

where rad
′ = (riI

′, riQ
′) is the constellation points that

satisfies

(riI
′, riQ

′) =

{
(riI , riQ) ,

√
riI2 + riQ2 < kpowGr,

kpow (riI , riQ) ,
√

riI2 + riQ2 ≥ kpowGr,
(33)

where Gr = max
(√

riI2 + riQ2
)
, kpow is the pre-defined

power coefficient, which should be greater than the ratio
of the innermost constellation point power to the outermost
constellation point power.

The square root normalized mean square error (SNMSE) of
the SNR estimation for MQAM signal is [26]

SNMSE =

√√√√ 1

L

L∑
i=1

(
ρ̂i − ρ

ρ

)2

, (34)

where ρ̂ and ρ are estimation results and the real value of
the estimated SNR. The normalized Cramer-Rao lower bound
(CRLB) of the SNR estimation for MQAM signal is [28]

100

Lln2 (10)

(
1 +

2

ρ

)
. (35)

From the above analysis, the procedure of the introduced
signal estimation method is summarized in Algorithm 1.

V. NUMERIC SIMULATION AND DISCUSSION

In this section, simulations and the corresponding analysis
will be conducted to evaluate the performance of the pro-
posed signla estimation methods. We take 50000 samples and
4QAM, 16QAM-square, 16QAM-110C circular, 16QAM-QCI
circular, 32QAM-cross, 32QAM-110C circular, 32QAM-QCI
circular, 64QAM-square, 64QAM-110C circular, 64QAM-
QCI circular, 128QAM-cross, 256QAM-square, 256QAM-
110C circular, 256QAM-QCI circular as a trial source, and

Algorithm 1 The procedure of signal estimation in CSNs for
satellite-based IIoT.

1: For any received constellation point sequences, set the
same p and Meshnum.

2: Estimate the continuous probability density function by
(13).

3: Construct the binary real points by (19).
4: Estimate the modulation order and constellation type by

(28).
5: If the constellation type is 110C circular of 16/64QAM,

SNR is estimated by (31), (32) and (33), SNR of the else
constellation type of MQAM can be estimated by (30).
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Fig. 2. Recognition correct rate of modulation parameters with different
constellation types versus different SNRs

carry out a series of simulation experiments to assess the
performance of the proposed signal estimation methods for
satellite-based IIoT.

Table II shows the number of true points and the clustering
result of the binary feature matrix of the 256QAM-QCI circu-
lar constellation, where the bold data is the case of successful
recognition. In the case of the lower SNR corresponding to
Table I, the different mesh density and peak-scale coefficients
are taken. Taking the most complex 256QAM-QCI circular
constellation in the signal set as an example, the theoretical
probability density function is obtained under the condition
of 27dB. Take a grid density from 10 to 100 in steps of
10 and take a peak scale factor from 0.1 to 0.9 in steps of
0.1 to obtain a binary feature matrix and cluster it. The five
different clustering radii are r1 = 0.35, r2 = 0.21, r3 = 0.14,
r4 = 0.08, r5 = 0.05, respectively [29]. In order to balance
the computational complexity and estimation performance, we
set Mushnum = 60 and p = 0.3 in this paper.

Fig. 2 shows the recognition correct rate of modulation
parameters with different constellation types versus different
SNRs. The symbol rate of the signal is 1MBaud, the over-
sampled rate is 8, the number of transmitted symbols is 5000,
and the data multiplexing method is mirror mapping reuse.
The roll-off factor of raised cosine roll-off filter is 0.5. Note
that all the different signals on different constellation types
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TABLE II
THE NUMBER OF TRUE POINTS OF 256QAM-QCI CIRCULAR CONSTELLATION BINARY VALUE MATRIX (SNR=25dB)

p
Meshnum 10 20 30 40 50 60 70 80 90 100

0.1 20 68 164 256 456 544 812 1068 1352 1640
0.2 12 44 108 172 264 360 588 788 928 1156
0.3 12 36 76 128 192 304 400 620 640 872
0.4 12 36 76 112 164 264 288 448 504 668
0.5 4 16 36 76 88 172 228 308 368 428
0.6 4 12 36 40 52 148 176 176 280 324
0.7 4 12 36 40 24 132 132 124 240 244
0.8 4 12 20 32 16 76 72 72 152 168
0.9 4 12 12 20 12 44 44 52 80 116

0 5 10 15 20 25 30

SNR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
co

g
n
iti

o
n
 c

o
rr

e
ct

 r
a
te

4QAM-method 1
4QAM-proposed method
16QAM square-method 1
16QAM average-proposed method
64QAM square-method 1
64QAM average-proposed method

Fig. 3. Performance comparison between the proposed method and the
method in [19] versus different SNRs

go through the same signal processing procedure, which is
listed in Algorithm 1, and all the parameters are the same for
all the modulation formats. From Fig. 2, it can be seen that
the proposed estimation method could provide the best overall
performance for different constellation types of MQAM signal.
This method not only can estimate the modulation order, but
also has good constellation type estimation performance for
MQAM signal. The recognition rates of different constellation
types under the same modulation order are basically similar,
and the recognition rate decreases with the increase of the
modulation order and SNR, which is consistent with the
theory. The recognition SNR threshold (recognition correct
rate> 90%) of MQAM signal with different modulation orders
and different constellation types are 4QAM (2dB), 16QAM
(5dB), 32QAM (8dB), 64QAM (13dB), 128QAM (11dB),
256QAM (14dB), which meet the demodulation needs in Table
I.

Fig. 3 is performance comparison between the proposed
method and the method in [19] with different SNRs. Since
the [19] method (method 1) is not universal, the signal set
of the comparison method is limited to the 4QAM, 16QAM-
square, 64QAM-square signal. In this paper, the recognition
accuracy is greater than 90%, which means that this method
is effective. From Fig. 3, it is seen that the 4QAM can achieve
100% recognition correct rate in method 1 when the ratio
is greater than or equal to 2dB, which is the same as the
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Fig. 4. Performance comparison between the proposed method and the
method in [29] versus different SNRs

recognition threshold of the proposed method. The 16QAM is
successfully identified at 10dB in method 1, which is higher
than the 16QAM average recognition threshold (5dB) in the
proposed method. The 64QAM is successfully identified at
22dB in method 1, which is higher than the 64QAM average
recognition threshold (12dB) in the proposed method and
higher than the 21dB demodulation threshold specified by the
110C military standard. The recognition correct rates of the
proposed method and the method 1 decreases with the increase
of the modulation order and increases with the increase of
the SNR, which is consistent with the theory. Moreover, the
method 1 is not universal, the method 1 will not suit for
circular constellations in the MQAM signal.

Fig. 4 is performance comparison between the proposed
method and the method in [29] with different SNRs. The
comparison method is the method in [29]. Since the [29]
method (method 2) is not universal, the signal set of the
comparison method is limited to the 4QAM, 16QAM-square,
32QAM-cross, 64QAM-square, 128QAM-cross, 256QAM-
square signal. From Fig. 4, it is seen that the 4QAM can
achieve 100% recognition correct rate in method 2 when the
ratio is greater than or equal to 1dB, which is similar to
the identification threshold (2dB) of the proposed method.
The method 2 of 16QAM-square constellation is successful
at 2dB, which is slightly lower than the 16QAM average
recognition threshold (5dB). The 64QAM-square constellation
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Fig. 5. SNMSE of improved M2M∞ method with different types of
constellation

comparison method is successful at 3dB in method 2, which is
lower than the 64QAM average recognition threshold (12dB).
The comparison method of 256QAM-square constellation is
successfully recognized at 5dB in method 2, which is lower
than the average recognition threshold of 256QAM (14dB).
However, for the cross constellation diagram, the recognition
threshold of the method 2 is higher than the proposed method.
The 32QAM-cross of method 2 is successfully identified at
11dB, which is higher than the 32QAM average recognition
threshold (8dB). The 128QAM-Cross of method 2 is success-
fully identified at 16dB, which is higher than the 128QAM
average recognition threshold (11dB). The recognition correct
rate of the method 2 decreases with the increase of the
modulation order and increases with the increase of the SNR.
The recognition correct rate of the method 2 is related to the
type of the constellation, in which the square is higher than
the cross. When the type of the constellation is the same,
the recognition correct rate decreases with the increase of the
modulation order and increases with the increase of the SNR,
which is consistent with the theory. Moreover, the method
2 is not universal, the method 2 will not suit for circular
constellations in the MQAM signal.

Fig. 5 is the SNR estimation performance of the proposed
method with different constellation types of MQAM signal.
Since the monotonic feature T̃β (rad) extracted in this paper is
related to the length of the signal, when the table lookup table
is created, the feature quantity is also calculated by using 500
symbols. The improved M2M∞ method is used to estimate
SNR, and the SNMSE of the SNR estimation when SNR
from 0 dB to 20 dB is shown in Fig.5. Fig. 5 shows that
the distribution of constellation points in the 4QAM square
constellation is simple and its SNMSE is closest to CRLB,
which decreases from 0.32 to 0.12, and gradually stabilizes af-
ter 8dB. The estimated SNMSE of other constellation types of
MQAM gradually moves away from CRLB as the modulation
order increases but does not exceed 1. The sudden increase in
SNMSE at high SNR in the SNR estimation method by using
higher-order moments is eliminated. The average SNMSE of
the three constellations of 16QAM decreased from 0.35 to
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Fig. 6. SNR estimation performance comparison with different constellation
types and modulation orders

0.19 and stabilized after 10dB. The average SNMSE of the
three constellations of 32QAM decreased from 0.41 to 0.22,
and gradually stabilized after 14dB. The average SNMSE of
the three constellations of 64QAM dropped from 0.44 to 0.25
and stabilized after 18dB. The SNMSE of the 128QAM cross
constellation map dropped from 0.45 to 0.23, and gradually
stabilized after 18dB. The SNMSE of the cross constellation of
128QAM decreased from 0.45 to 0.23, and gradually stabilized
after 18dB. The average SNMSE of the three constellations of
256QAM rises from 0.55 to 0.8, and then gradually decreases
to around 0.3. That is, the SNMSE does not strictly decrease
with the increase of the signal-to-noise ratio and shows an
upward trend at 0-10dB. This means that within these ranges,
the received signal is not highly dependent on the estimated
parameters. That is, a small change in the SNR within a
certain range does not cause a large change in the received
signal at the receiving end, and the received signal does not
bring a large amount of information about the SNR, therefore,
the SNMSE also fluctuates. This phenomenon seems to be
inherent to all constellations with non-constant modulus, as
this is also the case in the estimation of other parameters of
the MQAM signal, such as carrier frequency and carrier phase.
It can be seen that no matter what type the constellation is,
the improved M2M∞ method proposed in this paper can make
the residual mean square error close to CRLB in the whole
SNR interval. This proposed method solves the problem that
the SNMSE of the conventional methods increase greatly in
high SNR regions.

Fig. 6 is the SNR estimation performance comparison with
different constellation types. The comparison method is the
M2M4 and M6 method. There are 14 different constellation
types of MQAM signal, and the average value of the SNR
estimated from 0 dB to 30 dB is shown in Fig. 6. From Fig.
6, it can be seen that the M2M4 and M6 methods cannot
accurately estimate the SNR of the 4QAM signal, but the trend
is close to the actual SNR. When the signal is other MQAM
signals, the M2M4 and M6 methods cannot estimate the SNR
because the constellation becomes more complicated. This is
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because with the improvement of the SNR and the complexity
of the constellation diagram, the statistics used to estimate the
SNR tend to be stationary, and the proposed method based on
improved M2M∞ is applicable to different constellation types
and different modulation orders.

VI. CONCLUSION

In CSNs, MQAM signal estimation are very challenging,
especially when no any priori information is available. In this
paper, a novel non-data assisted MQAM signal estimation
method is proposed for satellite-based IIoT, consisting of three
main components, modulation order estimation, the constel-
lation type estimation and SNR estimation. In the proposed
method, the constellation diagram is obtained according to
the baseband signal firstly. Then, the constellation diagram
is processed by the grid method to estimate the probability
density distribution function of constellation points. Secondly,
set the peak scale factor and use the section to obtain the
binary feature matrix of the probability density function.
After that, the SNR estimation is carried out based on the
improved M2M∞ and using the look-up table method ac-
cording to the modulation order and the type of constellation.
Finally, extensive simulation studies are conducted and the
corresponding simulation results show that the recognition
correct rate of modulation constellation types increases with
the increase of the SNR and decreases with the increase of the
modulation order. Apparently, it indicates that the proposed
SNR estimation method could achieve excellent performance
with different modulation orders and different constellation
types.

REFERENCES

[1] X. Liu, X. Zhai, W. Lu, and C. Wu, “QoS-guarantee resource allocation
for multibeam satellite industrial internet of things with NOMA,” IEEE
Transactions on Industrial Informatics, DOI: 10.1109/TII.2019.2951728,
Nov. 2019.

[2] F. Li, K. Lam, N. Zhao, X. Liu, K. Zhao, and L. Wang, “Spectrum
trading for satellite communication systems with dynamic bargaining,”
IEEE Transactions on Communications, vol. 66, no. 10, pp. 4680-4693,
May 2018.

[3] D. Hu, L. He, and J. Wu, “A novel forward-link multiplexed scheme in
satellite-based internet of things,” IEEE Internet of Things Journal, vol.
5, no. 2, pp. 1265-1274, Apr. 2018.

[4] H. Song, X. Fang, L. Yan and Y. Fang, “Control/user plane decoupled
architecture utilizing unlicensed bands in LTE systems,” IEEE Wireless
Communications, vol. 24, no. 5, pp. 132-142, Oct 2017.

[5] X. Liu, M. Jia, X. Zhang, and W. Lu, “A novel multichannel internet of
things based on dynamic spectrum sharing in 5G communication,” IEEE
Internet of Things Journal, vol. 6, no. 4, pp. 5962-5970, Aug. 2019.

[6] V. Gouldieff, J. Palicot, and S. Daumont, “Blind modulation classification
for cognitive satellite in the spectral coexistence context,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 12, pp. 3204-3217, June 2017.

[7] W. Zhang, F. Gao, S. Jin and H. Lin, “Frequency synchronization
for uplink massive MIMO systems,” IEEE Transactions on Wireless
Communications, vol. 17, no. 1, pp. 235-249, Jan. 2018.

[8] H. Song, X. Fang and C. Wang, “Cost-reliability tradeoff in licensed and
unlicensed spectra interoperable networks with guaranteed user data rate
requirements,” IEEE Journal on Selected Areas in Communications, vol.
35, no. 1, pp. 200-214, Jan 2017.

[9] X. Yan, K. An, T. Liang, G. Zheng, and Z. Feng, “Effect of imperfect
channel estimation on the performance of cognitive satellite terrestrial
networks,” IEEE Access, vol. 7, pp. 126293-126304, Sep. 2019.

[10] X. Zhang et al., ”Outage Performance of NOMA-Based Cognitive
Hybrid Satellite-Terrestrial Overlay Networks by Amplify-and-Forward
Protocols,” IEEE Access, vol. 7, pp. 85372-85381, 2019.

[11] Digital video broadcasting (DVB) framing structure, channel coding and
modulation for 11/12 GHz satellite services, ETSI EN300 421 V1.12,
Aug. 1997.

[12] European standard digital video broadcasting (DVB) second gener-
ation framing structure, channel coding and modulation systems for
broadcasting, interactive services, news gathering and broadband satellite
applications, ETSI EN 302 307 V1.1.1, Mar. 2013.

[13] Q. Gao, G. Zhu, S. Lin, and C. Fu, “Variable-rate variable-power
MQAM for spectral efficiency maximization in full-duplex systems,”
IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 288-291, June
2018.

[14] Interoperability and performance standards for data modems US military
standard, MIL-STD-188-110C, Sep. 2011.

[15] F. Kayhan, “QAM to circular isomorphic constellations,” in Proc.
2016 8th Advanced Satellite Multimedia Systems Conference and the
14th Signal Processing for Space Communications Workshop, Palma de
Mallorca, Oct. 2016, pp. 1-5.

[16] M. Liu, G. Liao, Z. Yang, H. Song, and F. Gong, “Electromagnetic signal
classification based on deep sparse capsule networks,” IEEE Access, vol.
7, pp. 83974-83983, June. 2019.

[17] J. Wang, B. Li, M. Liu, and J. Li, “SNR estimation of time-frequency
overlapped signals for underlay cognitive radio,” IEEE Communications
Letters, vol. 19, no. 11, pp. 1925-1928, Sep. 2015.

[18] M. Liu, L. Liu, H. Song, Y. Hu, Y. Yi, and F. Gong, “Signal estimation
in underlay cognitive networks for industrial internet of Things,” IEEE
Transactions on Industrial Informatics, DOI: 10.1109/TII.2019.2952413,
Nov. 2019.

[19] H. Abuella, and M. Ozdemir, “Automatic modulation classification
based on kernel density estimation,” Canadian Journal of Electrical and
Computer Engineering, Vol. 39, no.3, pp. 203-209, July 2016.

[20] M. Laghate, S. Chaudhari and D. Cabric, “USRP N210 demonstration
of wideband sensing and blind hierarchical modulation classification,” in
Proc. 2017 IEEE International Symposium on Dynamic Spectrum Access
Networks, Piscataway, NJ, May 2017, pp. 1-3.

[21] Y. Zhao, X. Yang and Y. Lin, “A new recognition method for MQAM
signals in software defined radio,” in Proc. 2017 IEEE International
Conference on Software Quality, Reliability and Security Companion,
Prague, Aug. 2017, pp. 271-275.

[22] H. Ren, J. Yu, Z. Wang, J. Chen and C. Yu, “Modulation format recog-
nition in visible light communications based on higher order statistics,”
in Proc. 2017 Conference on Lasers and Electro-Optics Pacific Rim,
Singapore, Nov. 2017, pp. 1-2.

[23] Y. Kumar, G. Jajoo, and S. Yadav, “Modulation scheme detection of
blind signal using constellation graphical representation,” in Proc. 2017
International Conference on Computer, Communications and Electronics,
Jaipur, Aug. 2017, pp. 231-235.

[24] J. Tian, T. Zhou, T. Xu, H. Hu and M. Li, “Blind estimation of channel
order and SNR for OFDM systems,” IEEE Access, vol. 6, pp. 12656-
12664, Jan. 2018.

[25] X. Qun and Z. Jian, “Improved SNR estimation algorithm,” in Proc.
2017 International Conference on Computer Systems, Electronics and
Control, Dalian, Aug. 2017, pp. 1458-1461.

[26] S. Khalid and S. Abrar, “A non-data-aided SNR estimation method for
square-QAM system,” in Proc. 2013 11th International Conference on
Frontiers of Information Technology, Islamabad, Jan. 2013, pp. 146-149.

[27] Y. Zhao, W. Li, B. Yang and X. Mao, “Modified method of input SNR
estimation for robust adaptive beamforming,” in Proc. 2017 International
Applied Computational Electromagnetics Society Symposium, Suzhou,
Sep. 2017, pp. 1-2.

[28] F. Bellili, A. Stphenne, and S. Affes, “Cramer-Rao lower bounds for
NDA SNR estimates of square QAM modulated transmissions,” IEEE
Transactions on Communicaitons, vol. 58, no. 11, pp. 3211 - 3218, Dec.
2010.

[29] L. Wang and Y. Li, “Constellation based signal modulation recognition
for MQAM,” in Proc. 2017 IEEE 9th International Conference on
Communication Software and Networks, Guangzhou, Dec. 2017, pp. 826-
829.


