5,488 research outputs found

    Macroscopic modelling and robust control of bi-modal multi-region urban road networks

    Get PDF
    The paper concerns the integration of a bi-modal Macroscopic Fundamental Diagram (MFD) modelling for mixed traffic in a robust control framework for congested single- and multi-region urban networks. The bi-modal MFD relates the accumulation of cars and buses and the outflow (or circulating flow) in homogeneous (both in the spatial distribution of congestion and the spatial mode mixture) bi-modal traffic networks. We introduce the composition of traffic in the network as a parameter that affects the shape of the bi-modal MFD. A linear parameter varying model with uncertain parameter the vehicle composition approximates the original nonlinear system of aggregated dynamics when it is near the equilibrium point for single- and multi-region cities governed by bi-modal MFDs. This model aims at designing a robust perimeter and boundary flow controller for single- and multi-region networks that guarantees robust regulation and stability, and thus smooth and efficient operations, given that vehicle composition is a slow time-varying parameter. The control gain of the robust controller is calculated off-line using convex optimisation. To evaluate the proposed scheme, an extensive simulation-based study for single- and multi-region networks is carried out. To this end, the heterogeneous network of San Francisco where buses and cars share the same infrastructure is partitioned into two homogeneous regions with different modes of composition. The proposed robust control is compared with an optimised pre-timed signal plan and a single-region perimeter control strategy. Results show that the proposed robust control can significantly: (i) reduce the overall congestion in the network; (ii) improve the traffic performance of buses in terms of travel delays and schedule reliability, and; (iii) avoid queues and gridlocks on critical paths of the network

    Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm

    Get PDF
    The concurrent reader-writer problem (Courtois, 1971) involves two classes of processes: readers and writers, both of which wish to access a shared resource. Many readers can access the shared resource at the same time. However, if a writer is accessing the resource, no readers or other writers can access the resource at the same time. In the reader-priority version of the problem, readers are prioritized over writers when processes from both classes are trying to access the shared resource. Previous research (Bhatt, 2010) showed a reader-priority constant-RMR multi-reader, multi-writer algorithm for Cache-Coherent (CC) systems. However, this algorithm does not allow for readers or writers to abort, which allows readers and writers waiting for the resource to stop trying to access the resource and to quickly return to the Remainder Section of the code, where the process performs tasks unrelated to the shared resource. This thesis presents an abortable constant-RMR reader-priority multi-reader single-writer algorithm for CC systems. Additionally, we show how to generalize the algorithm into a multi-reader multi-writer algorithm using any given abortable mutual exclusion algorithm. The algorithm is proven rigorously by invariants and tested using a system of mathematical specification and model-checking tools (PlusCal/TLA+/TLC)

    Exploiting behavioral biometrics for user security enhancements

    Get PDF
    As online business has been very popular in the past decade, the tasks of providing user authentication and verification have become more important than before to protect user sensitive information from malicious hands. The most common approach to user authentication and verification is the use of password. However, the dilemma users facing in traditional passwords becomes more and more evident: users tend to choose easy-to-remember passwords, which are often weak passwords that are easy to crack. Meanwhile, behavioral biometrics have promising potentials in meeting both security and usability demands, since they authenticate users by who you are , instead of what you have . In this dissertation, we first develop two such user verification applications based on behavioral biometrics: the first one is via mouse movements, and the second via tapping behaviors on smartphones; then we focus on modeling user web browsing behaviors by Fitts\u27 Law.;Specifically, we develop a user verification system by exploiting the uniqueness of people\u27s mouse movements. The key feature of our system lies in using much more fine-grained (point-by-point) angle-based metrics of mouse movements for user verification. These new metrics are relatively unique from person to person and independent of the computing platform. We conduct a series of experiments to show that the proposed system can verify a user in an accurate and timely manner, and induced system overhead is minor. Similar to mouse movements, the tapping behaviors of smartphone users on touchscreen also vary from person to person. We propose a non-intrusive user verification mechanism to substantiate whether an authenticating user is the true owner of the smartphone or an impostor who happens to know the passcode. The effectiveness of the proposed approach is validated through real experiments. to further understand user pointing behaviors, we attempt to stress-test Fitts\u27 law in the wild , namely, under natural web browsing environments, instead of restricted laboratory settings in previous studies. Our analysis shows that, while the averaged pointing times follow Fitts\u27 law very well, there is considerable deviations from Fitts\u27 law. We observe that, in natural browsing, a fast movement has a different error model from the other two movements. Therefore, a complete profiling on user pointing performance should be done in more details, for example, constructing different error models for slow and fast movements. as future works, we plan to exploit multiple-finger tappings for smartphone user verification, and evaluate user privacy issues in Amazon wish list

    Energy-Efficient Transmission Schedule for Delay-Limited Bursty Data Arrivals under Non-Ideal Circuit Power Consumption

    Full text link
    This paper develops a novel approach to obtaining energy-efficient transmission schedules for delay-limited bursty data arrivals under non-ideal circuit power consumption. Assuming a-prior knowledge of packet arrivals, deadlines and channel realizations, we show that the problem can be formulated as a convex program. For both time-invariant and time-varying fading channels, it is revealed that the optimal transmission between any two consecutive channel or data state changing instants, termed epoch, can only take one of the three strategies: (i) no transmission, (ii) transmission with an energy-efficiency (EE) maximizing rate over part of the epoch, or (iii) transmission with a rate greater than the EE-maximizing rate over the whole epoch. Based on this specific structure, efficient algorithms are then developed to find the optimal policies that minimize the total energy consumption with a low computational complexity. The proposed approach can provide the optimal benchmarks for practical schemes designed for transmissions of delay-limited data arrivals, and can be employed to develop efficient online scheduling schemes which require only causal knowledge of data arrivals and deadline requirements.Comment: 30 pages, 7 figure
    • …
    corecore