
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-2-2011

Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm

Nan Zheng
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zheng, Nan, "Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm" (2011). Dartmouth
College Undergraduate Theses. 71.
https://digitalcommons.dartmouth.edu/senior_theses/71

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/71?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth Computer Science Technical Report TR2011-685

Constant-RMR Abortable Reader-Priority Reader-Writer

Algorithm

Nan Zheng

Thesis Advisor: Prasad Jayanti

June 2, 2011

Abstract

The concurrent reader-writer problem [6] involves two classes of processes: readers and

writers, both of which wish to access a shared resource. Many readers can access the shared

resource at the same time. However, if a writer is accessing the resource, no readers or other

writers can access the resource at the same time. In the reader-priority version of the problem,

readers are prioritized over writers when processes from both classes are trying to access the

shared resource. Previous research [2] showed a reader-priority constant-RMR multi-reader,

multi-writer algorithm for Cache-Coherent (CC) systems. However, this algorithm does not

allow for readers or writers to abort, which allows readers and writers waiting for the resource

to stop trying to access the resource and to quickly return to the Remainder Section of the code,

where the process performs tasks unrelated to the shared resource.

This thesis presents an abortable constant-RMR reader-priority multi-reader single-writer

algorithm for CC systems. Additionally, we show how to generalize the algorithm into a multi-

reader multi-writer algorithm using any given abortable mutual exclusion algorithm. The algo-

rithm is proven rigorously by invariants and tested using a system of mathematical speci�cation

and model-checking tools (PlusCal/TLA+/TLC).

1

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Contents

1 Introduction 4

2 Background and De�nitions 6

2.1 Mutual Exclusion . 6

2.2 Reader-Writer Problem . 7

2.3 Reader Priority . 8

2.4 Abortability of Reader-Writer Algorithms . 9

2.5 Speci�cation of the Abortable Reader-Priority Reader-Writer Algorithm 10

2.6 Explanation of RMR (Remote Memory References) complexity 10

3 Hardware Support 12

3.1 Registers . 12

3.2 Fetch and Add (F&A) . 12

3.3 Compare and Swap (CAS) . 12

3.4 Cache Invalidation Models in Cache-Coherent Systems 13

4 Previous Work 14

4.1 Constant RMR Reader-Priority Multi-Reader Single-Writer Algorithm 14

4.2 Abortable Mutual Exclusion Algorithm . 14

5 Abortable Reader-Priority Single-Writer Multi-Reader Algorithm 17

5.1 Description of the Variables and Their Purpose . 17

5.2 Reader's Protocol: Line-by-Line Commentary . 20

5.3 Writer's Protocol: Line-by-Line Commentary . 20

5.4 Promote Procedure: Line-by-Line Commentary . 22

6 Model Checking 24

6.1 PlusCal . 24

6.2 TLA+ . 24

6.3 TLC . 24

Page 2

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

7 Proof of Algorithm 26

7.1 Notation . 26

7.2 Invariants . 27

7.3 Proof of Invariants . 31

7.4 Proof of Properties . 41

8 Worst-case O(1)-RMR in Conservative Cache Model 47

9 Generalization to Multi-Reader Multi-Writer Algorithm 48

10 Conclusion 49

11 Acknowledgments 50

References 52

A Appendix 54

A.1 Algorithm and Invariants Speci�ed in PlusCal and TLA+ 54

Page 3

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

1 Introduction

In concurrent systems, computation is performed by multiple processes with a shared memory

framework. Processes may perform computations asynchronously, involving both local and shared

variables. Processes can execute atomic steps (i.e. a step that whose execution cannot be interrupted

by that of another process) of code in any order. Concurrent algorithms de�ne code for individual

processes to execute in order to correctly interact with other processes in the system.

One of the central areas of research in concurrent programming is the problem of mutual

exclusion[9], where many processes contend for a common shared resource that can only be ac-

cessed by one process at a time. A well-studied variation of the mutual exclusion problem is the

reader-writer problem, where processes attempting to access the shared resource are divided into

two classes: readers and writers. Many readers can access the shared resource at the same time.

However, if a writer is accessing the resource, no readers or other writers can access the resource at

the same time.

There are a number of ways to specify the problem depending on how one prioritizes the classes

accessing the shared resource. The three most common speci�cations include reader-priority (where

readers have priority over writers), writer-priority (where writers have priority over readers), and

fair-switching or starvation-free (where neither class has priority over the other, and any process

wishing to access the shared resource will eventually get its turn). This thesis studies only the

reader-priority version of the problem.

Previous research by Bhatt and Jayanti [2] showed a constant-time reader-priority reader-writer

algorithm satisfying a large set of desirable properties. However, this algorithm does not allow for

reader or writer abort, which allows readers and writers waiting for the resource to stop trying to

access the resource and to quickly return to the Remainder Section of the code, where the process

performs tasks unrelated to the shared resource.

This thesis presents an abortable reader-priority multi-reader single-writer algorithm. The algo-

rithm presented has constant-time reader and writer abort features while preserving constant-time

for the rest of the algorithm in hardware systems where caches are not invalidated when a variable

is updated with the same value. In systems where caches are invalidated when a variable is updated

to the same value, we show that our algorithm runs in amortized constant-time. We also present

Page 4

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

a modi�cation to our algorithm for it to run in constant-time in the latter hardware model for up

to R readers (where R is a constant), beyond which the time-complexity will be O(nr
R), where nr is

the number of actual readers in the algorithm.

Additionally, we show how to generalize the algorithm into a multi-reader multi-writer algorithm

using any given abortable mutual exclusion algorithm. For example, we can use Jayanti's abortable

mutual exclusion algorithm [10] to generate a O(min(k, log(nw)))-time multi-reader multi-writer

algorithm, for which k is the number of contending writers for the critical section and nw is the

total number of writers.

Additionally, we provide a formal speci�cation of the single-writer version of the algorithm in

PlusCal [13], a formal language that translates pseudocode into TLA+ (Temporal Logic of Actions)

[12], a language for specifying and proving properties of both concurrent and sequential systems.

We then verify the speci�cations in the TLC model checker [12] for small sample sets. Finally, we

present a formal invariant proof for our algorithm.

Page 5

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

2 Background and De�nitions

In our computing model, processes communicate asynchronously using shared variables. Each pro-

cess has its own unique identi�er called a process ID (pid). We denote the set of all pids as PID.

Each process p has a state, which is the current value of p's program counter (PC) and all of p's

local variables. We denote p's PC as PCp. The configuration of a the system is de�ned by the

values of all the shared variables and the states of all the processes in the system. The initial

configuration (C0) of a system is the con�guration before any processes have executed any lines of

code.

Processes execute atomic operations by taking steps. When it is a process p's turn, p transitions

from its current con�guration C by taking a step s (by executing one line of the code at PCp)

and moving to a new con�guration, C.s. We refer to C as the start con�guration and C.s as the

end con�guration of the step s. A series of steps from the initial con�guration, C0, is called a

run. A con�guration C′ is reachable if the last step of some �nite run of the algorithm has an end

con�guration of C′. We say that a process p has crashed in an in�nite run σ if there exists some

time t such that after t, p never takes a step.

2.1 Mutual Exclusion

In concurrent programming, there are times when multiple processes wish to access a shared resource

(e.g. a global �le or data structure). However, accessing and modifying shared data are not always

atomic actions and may take multiple steps, during which the shared resource should not be accessed

by other processes since it could result in undesirable behavior or race conditions. Thus, mutual

exclusion algorithms ensure that a shared resource is only available to one process at a time. The

structure of mutual exclusion algorithms is commonly broken down into four sections:

• Try Section: the section of code that a process executes when it is attempting to access the

shared resource. The Try Section is composed of two parts: a doorway and a waiting room.

The doorway is a section of code that runs in a bounded number of steps in which a process

declares its presence and wish to access the shared resource to the other processes. Immediately

following the doorway, the process enters the waiting room, where it busy-waits until it is

granted permission to enter the CS or decides to abort.

Page 6

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

• Critical Section (CS): the section of code where the shared resource can be accessed.

• Exit Section: the section of code that a process executes just after it leaves the Critical

Section, informing other processes that it has �nished using the shared resource.

• Remainder Section: the section of code that a process executes between the Exit Section

and the Try Section when the process has no interest in using the shared resource.

2.2 Reader-Writer Problem

The reader-writer problem [6] is a variation of the mutual exclusion program where the processes

involved are divided into two classes: readers and writers. If a reader is in the Critical Section (CS)

or is enabled to enter the CS, then other readers can be in the CS at the same time. However, if a

writer is in the CS, no other readers or writers can be in the CS at the same time.

Each time a process p tries to access the shared resource is called an attempt. An attempt lasts

from the moment p enters the Try Section to the moment p exits either the Exit Section or the

Abort Section. A read attempt is an attempt from a reader, and a write attempt is an attempt from

a writer.

We also introduce the terms doorway precedes, doorway concurrent, and enabled, which we shall

use in our description of the properties for the reader-writer problem, modi�ed from Bhatt and

Jayanti's paper[2] to allow for abort:

De�nition 1. If A and A′ are any two attempts in a run (possibly by di�erent processes), A

doorway precedes A′ if A completes the doorway before A′ begins the Try Section. A and A′ are

doorway concurrent if neither doorway precedes the other.

De�nition 2. A process p is enabled to enter the CS in con�guration C if p is in the Try Section

in C and there is an integer b such that, in all runs from C, p enters the CS in at most b of its own

steps if p does not choose to abort in any of those steps.

E�ective reader-writer algorithms must satisfy a set of useful properties beyond solving the

basic problem. For consistency, the following list of desirable properties in a reader-writer system

is replicated almost in verbatim from Bhatt and Jayanti's paper [2], with edits made to allow for

the notion of abortability:

Page 7

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

(P1) Mutual Exclusion: If a writer is in the CS at any time, then no other process is in

the CS at the same time.

(P2) Bounded Exit: There is an integer b such that in every run, every process completes

the Exit section in at most b of its own steps.

(P3) First-Come-First-Served (FCFS) among writers: If w and w′ are any two write

attempts in a run and w doorway precedes w′, then w′ does not enter the CS before w

if w does not abort during its attempt.

(P4) First-In-First-Enabled (FIFE) among readers: Let r and r′ be any two read

attempts in a run such that r doorway precedes r′. If r′ enters the CS before r, then r

is enabled to enter the CS at the time r′ enters the CS.

(P5) Concurrent Entering: Informally, if all writers are in the Remainder section, readers

should not experience any waiting, i.e., every reader in the Try Section should be able

to proceed to the CS in a bounded number of its own steps. More precisely, there is an

integer b such that, if σ is any run from a reachable con�guration such that all writers

are in the Remainder section in every con�guration in σ, then every read attempt in σ

executes at most b steps of the Try section before entering the CS.

(P6) Livelock-freedom: If no process crashes in an in�nite run, then in�nitely many at-

tempts complete in that run.

2.3 Reader Priority

There are a number of ways to specify the problem depending on the priorities given to the two

classes of processes in accessing the shared resource. The three most common speci�cations include

reader-priority (where readers have priority over writers), writer-priority (where writers have priority

over readers), and fair-switching or starvation-free (where neither class has priority over the other,

and any process wishing to access the shared resource will eventually get its turn). This thesis

studies only the reader-priority speci�cation of the problem.

We begin by providing Bhatt and Jayanti's de�nition of >rp in verbatim [2]:

Page 8

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

De�nition 3. Let r and w be a read attempt and a write attempt, respectively, in a run. We de�ne

r >rp w if r doorway precedes w, or there is a time when some reader or writer is in the CS, r is in

the waiting room, and w is in the Try Section.

We now provide Bhatt and Jayanti's de�niton of reader priority in verbatim as follows [2]:

(RP1) Reader Priority : Let r and w be a read attempt and a write attempt, respectively,

in a run. If r >rp w, then w does not enter the CS before r.

(RP2) Unstoppable Reader Property : Let C be any reachable con�guration in which some

read attempt r is in the waiting room. Then we have:

1. If a reader is in the CS in C, then r is enabled to enter the CS in C.

2. If no writer is in the CS or the Exit section in C and r >rp w holds for all write

attempts w that are in the Try Section in C, then r is enabled to enter the CS in

C.

2.4 Abortability of Reader-Writer Algorithms

The main feature of our algorithm is the addition of the abortability properties, which allows

processes in the waiting room to call the Read-Abort or Write-Abort functions, and return to the

Remainder Section. We de�ne the properties as follows:

(A1) Wait-Free Reader-Abort: A reader in a busy-wait loop in the Try Section can decide

to execute the Read-Abort function. We require that a process be able to complete the

execution of Read-Abort in a bounded number of its own steps and subsequently enter

the Remainder Section.

(A2) Wait-Free Writer-Abort: A writer in a busy-wait loop in the Try Section can decide

to execute the Write-Abort function. We require that a process be able to complete the

execution of Write-Abort in a bounded number of its own steps and subsequently enter

the Remainder Section.

Page 9

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

2.5 Speci�cation of the Abortable Reader-Priority Reader-Writer Algorithm

In this thesis, we will show algorithms that solve the reader-writer problem, ful�lling properties

(P1), (P2), (P3), (P4), (P5), (P6), (RP1), (RP2), (A1), (A2) for Cache-Coherent systems with

di�erent Compare-And-Swap caching models.

2.6 Explanation of RMR (Remote Memory References) complexity

In concurrent systems, processes have access to both remote memory and local memory. While

accesses to local memory are relatively fast, accesses to remote memory must travel over a network

and cause delays and congestion. Thus, time complexity in concurrent systems is measured in terms

of the number of Remote Memory References (RMR). In essence, local memory accesses take 0-

RMRs while each access to remote memory will take 1-RMR. Thus, e�cient concurrent algorithms

must aim to reduce the number of RMRs made.

However, what is considered to be an RMR varies depending on the underlying memory system

of the machine running the algorithm. Among modern systems, there are two prevalent shared

memory models: the Distributed Shared Memory (DSM) model (also known as the Non-Uniform

Memory Access (NUMA) model) and the Cache-Coherent (CC) model.

In the DSM model, each process has its own local memory and when a process accesses its

local memory, it incurs 0-RMRs. In addition, a process can also access the local memory of other

processes. However, an access to the local memory of another process is remote and thus incurs

1-RMR.

In the CC model, shared memory is remote to all processes, but each process is equipped with

a local cache. Accesses to a process' local cache incur 0-RMR. When a process p accesses a shared

variable v from shared memory for the �rst time (making 1-RMR), p will store a copy of v in its

cache. As long as no processes change the value of v, future reads of v by p will be made to its cache

instead of the shared memory, incurring 0-RMR. However, if another process q makes a change to

v, q will incur 1-RMR for writing to the shared memory and invalidating all the caches containing

a copy of v. Thus, the next time p accesses v, p incurs 1-RMR in order to transfer the new value of

v into p's cache.

In previous research, Danek and Hadzilacos showed that a sublinear-RMR reader-writer al-

Page 10

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

gorithm is not possible for the DSM model [7]. Thus, our focus for this thesis will be on the

constant-RMR implementation for the CC model.

Page 11

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

3 Hardware Support

For our algorithm, we assume that the following set of atomic operations are supported by the

hardware. These atomic operations are supported in most CPUs, including x86 [1] and SPARC v9

[15] systems.

3.1 Registers

Let A be a register with a value of c. A supports the following functions:

• Read(A): Return c.

• Write(A, v): Set c := v.

If j is a local variable and K is a shared variable, we equate j ← K with j = Read(K). Similarly,

we equate K ← j with Write(K, j).

3.2 Fetch and Add (F&A)

Let A be a F&A object with a value of c. A supports the following functions:

• Read(A): Return c.

• Write(A, v): Set c := v.

• F&A(A, v): Return c and set c := c+ v.

3.3 Compare and Swap (CAS)

Let A be a F&A object with a value of c. A supports the following functions:

• Read(A): Return c.

• Write(A, v): Set c := v.

• CAS(A, u, v): If c = y, set c := v and return true. Otherwise, return false.

Page 12

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

3.4 Cache Invalidation Models in Cache-Coherent Systems

The cache invalidation scheme in Cache-Coherent (CC) systems can vary depending on the under-

lying hardware system. In the case with CAS, a failed CAS by a process may or may not invalidate

the caches of the other processes. This discrepancy causes di�erent hardware systems to have dif-

ferent RMR complexities when running the same algorithm. To discuss this issue, we de�ne two

models describing how CAS operates in CC systems:

• Smart-Cache Model for CAS: In any CAS(A, u, v) operation where a CAS fails (and thus

not changing the value of A), the system does not invalidate any caches containing A.

• Conservative-Cache Model for CAS: In any CAS(A, u, v) operation where a CAS fails

(and thus not changing the value of A), the system may or may not invalidate any caches

containing A.

Although we hope to design algorithms for the Conservative-Cache model (which has fewer hardware

requirements), this prevents us from busy-waiting on any CAS variables, which is a hinderance for

our algorithm.

We shall later show that our algorithm has constant-RMR for CC systems with the Smart-Cache

model for CAS and amortized constant-RMR for CC systems with the Conservative-Cache model

for CAS (see Section 3.4). We also present an adjustment to the algorithm for it to have constant-

RMR in the Conservative-Cache model for up to R readers (where R is a constant), beyond which

the RMR-complexity algorithm will be O(nr
R), where nr is the number of actual readers in the

algorithm.

Page 13

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

4 Previous Work

4.1 Constant RMR Reader-Priority Multi-Reader Single-Writer Algorithm

We chose Bhatt and Jayanti's constant-RMR reader-priority multi-reader single-writer algorithm

[2] as the basis for our abortable algorithm because to our knowledge, it is the only constant-

RMR reader-priority algorithm satisfying (P1), (P2), (P3), (P4), (P5), (P6), (RP1), (RP2). Prior

to Bhatt's work, there were a number of reader-writer algorithms previously proposed for Cache-

Coherent systems. However, these algorithms either do not satisfy concurrent entering [16, 11],

or has linear RMR [3, 4] or O(lognr) RMR complexity (where nr is the number of readers in the

system)[8]. To the best of our knowledge, abortable reader-writer algorithms for cache-coherent

systems do not yet exist.

Figure 1 on page 15 shows Bhatt and Jayanti's algorithm. The �gure is attached for ease of

comparing the abortable version with the unabortable version of the algorithm for readers already

familiar with Bhatt and Jayanti's algorithm. For a detailed description and proof of the unabortable

algorithm, refer to [2].

4.2 Abortable Mutual Exclusion Algorithm

For the multi-reader multi-writer construction of our algorithm, we can use any abortable mutual

exclusion algorithm in conjunction with our single-writer multi-reader construction. The RMR-

complexity of the resulting multi-reader multi-writer algorithm will depend directly on the RMR-

complexity of the abortable mutual exclusion algorithm. This RMR limitation is acceptable because

in the absence of readers, the abortable multi-reader multi-writer algorithm is equivalent to the

abortable mutual exclusion problem.

Since Scott and Scherer proposed the need for abortability in mutual exclusion algorithms [18],

several FCFS algorithms have been introduced in the literature satisfying O(logn)-RMR complexity,

where n is the number of processes in the system [10, 14]. Any of these algorithms can be used with

our construction of the multi-reader multi-writer algorithm.

As an example, we will assume that we can use the abortable mutual exclusion algorithm by

Jayanti [10] to produce a min(k, log(nw))-RMR algorithm for abortable multi-reader multi-writer

algorithm (where k is the number of writers contending to enter the CS and nw is the total number

Page 14

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Constants:

PID is the set of process IDs

Variables:

D ∈ {0, 1} is a read/write variable, initialized to 0
Gate ∈ {0, 1}is a read/write variable, initialized to 0
X ∈ PID ∪ {true} is a CAS variable, initialized to any PID
Permit ∈ {true, false} is a CAS variable, initialized to true
C is a fetch&add variable, initialized to 0

procedure Write-Locki(){
REMAINDER SECTION

1. prevD ← D
2. currD ← prevD
3. D ← currD
4. Permit← false
5. Promotei()
6. wait till Permit

CRITICAL SECTION
7. Gate← currD
8. X ← i

}

procedure Promotei(){
9 x← X
10. if(x 6= true)
11. if(CAS(X,x, i))
12. if(Permit 6= true)
13. if(C = 0)
14. if(CAS(X, i, true))
15. Permit← true

}

procedure Read-Locki(){
REMAINDER SECTION

16. F&A(C, 1)
17. d← D
18. x← X
19. if(x ∈ PID)
20. CAS(X,x, i)
21. if(X = true)
22. wait till Gate = d

CRITICAL SECTION
23. F&A(C,−1)
24. Promotei()

}

Figure 1: Bhatt and Jayanti's [Unabortable] Reader-Priority Multi-Reader Single-Writer Algorithm
[2]

Page 15

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

of writers). To our knowledge, this is the most e�cient abortable mutual-exclusion algorithm for

the CC system and it uses LL/SC objects, which can be implemented by CAS [17].

Page 16

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

5 Abortable Reader-Priority Single-Writer Multi-Reader Algorithm

Figure 2 on page 18 shows our abortable reader-priority single-writer multi-reader algorithm satis-

fying properties (P1), (P2), (P3), (P4), (P5), (P6), (RP1), (RP2), (A1), (A2).

The labels to the left of the algorithm (w1, w2, etc.) represent the atomic steps of the algorithm.

Note that we have combined local computations into the same atomic steps as remote operations

(e.g. Line w3) in order to shorten the length and complexity of our subsequent proof. This is

permitted because local operations by a process p do not a�ect the global state and thus other

processes cannot distinguish if the step has or has not been executed.

The algorithm in Figure 2 on page 18 shows �ve procedures: Write-Lock, Read-Lock,Write-Abort,

Read-Abort, and Promote. The Write-Lock and Read-Lock procedures provides the code for the

Try and Exit Sections of the writers and readers, respectively. The Write-Abort and Read-Abort

procedures are called from either w6 or r6 to allow writers and readers to abort, respectively. Fi-

nally, the Promote procedure is used by both writers and readers to attempt to promote a writer

into the Critical Section if there are no enabled readers and if the writer is waiting for permission.

5.1 Description of the Variables and Their Purpose

D The �Direction� variable used to inform readers of the side (0 or 1) on which it should

enter and wait if required.

Gate The Gate controls the direction (0 or 1) in which readers are allowed to enter the CS.

As observed from Line r6, a reader r trapped in the waiting room must wait until the

Gate is equal to the D value that r previously read before r can access the CS.

X A tuple in the form [x1, x2]. We shall use x1 and x2 to address the individual components

of X in the rest of this thesis. x1 is used as a way to determine if the writer is interested

in entering the CS, to prevent bad interleavings, and for readers to steal permission

from the writers in the Try Section. When x1 is true, the writer either already has

permission to enter the CS or is in the Remainder Section. In both cases, the writer

does not want any help in getting permission to enter the CS and readers much check

the Gate to see if it is allowed to enter the CS or if it must wait for the writer. When

Page 17

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Constants:

PID is the set of process IDs
nPID is any value such that nPID /∈ PID ∪ {true}

Variables:

D ∈ {0, 1} is a read/write variable, initialized to 0
Gate ∈ {0, 1}is a read/write variable, initialized to 0
X ∈ [(PID ∪ {true, nPID})x(PID ∪ {nPID})] is a CAS variable, initialized to [true, nPID]
Permit ∈ PID ∪ {true, nPID} is a CAS variable, initialized to true
C is a fetch&add variable, initialized to 0

Persistent Variables:

Each Process has a SafeID ∈ PID, initialized to i, the PID of the process.

procedure Write-Locki(){
w_ncs: REMAINDER SECTION
w1: [∗, b]← X
w2: X ← [i, b]
w3: prevD ← D

currD ← prevD
w4: D ← currD
w5: Permit← b
wp: Promotei()
w6: wait till Permit

or Write-Aborti()
w_cs: CRITICAL SECTION
w7: Gate← currD

}

procedure Read-Locki(){
r_ncs: REMAINDER SECTION
r1: F&A(C, 1)
r2: d← D
r3: [a, b]← X
r4: if(a ∈ PID)

CAS(X, [a, b], [i, b])
r5: if(X = [true, ∗])
r6: wait till Gate = d

or Read-Aborti()
r_cs: CRITICAL SECTION
r7: F&A(C,−1)
rp: Promotei()

}

procedure Write-Aborti(){
wa1: Permit← true
wa2: [a, b]← X
wa3: if(a 6= true)

CAS(X, [a, b], [nPID, b])
wa4: if(X 6= [true, ∗])
wa5: D ← prevD

return

wa6: Gate← currD
}

procedure Read-Aborti(){
ra1: F&A(C, -1)
rap: Promotei()

}

procedure Promotei(){
f1: [a, b]← X

if(a 6= true)
f2: if(CAS(X, [a, b], [i, b]))
f3: if(Permit 6= true)
f4: if(C = 0)
f5: if(CAS(X, [i, b], [true, SafeID]))

SafeID ← b
f6: CAS(Permit, b, true)

}

Figure 2: Abortable Reader-Priority Single-Writer Multi-Reader Algorithm. Code for process with
pid i. The doorway for the reader is Lines r1 to r5.

Page 18

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

x1 is ¬true, it is either a pid or nPID, indicating that it might be attempting to enter

the CS. Thus, exiting readers will attempt promote the writer into the CS under the

correct conditions. On the other hand, x2 is used to store either a value that isn't being

used as a SafeID by any process. This is used for ensuring that the permission given

by a reader is current, and not for a previous iteration of Write-Lock.

Permit The permission used to determine if a writer is allowed to enter the CS or if it wants to

access the CS at all. The Permit is what the writer busy-waits on to see if it is allowed

to enter the CS. (Note that writers cannot busy-wait on X because X can change an

unbounded number of times during a single iteration of Write−Lock). Permit is true

when the writer has permission to enter the CS or when the writer does not want to

access the CS at all (i.e. in the Remainder, Exit, or Abort Sections). In both cases, the

writer is indicating that it does not need to be promoted into the CS. However, when

the writer wishes to access the CS (i.e. in the Try or Critical Section), it sets Permit

to the value present in the current x2 value, which helps distinguish the iteration of

Write−Lock calls, to prevent readers at Line f6 from accidentally granting permission

to the writer after the writer has aborted.

C A count of the readers in the Try Section or CS of the algorithm. This helps writers in

the Try Section or leaving readers determine if there are any remaining readers. If not,

the process should proceed with attempting to grant permission to the writer.

SafeID A unique persistent variable (a variable that a process retains even when it completes the

Write-Lock or Read-Lock procedures, so it can be used in the next call of Write-Lock

or Read-Lock) stored by all processes indicating the next number that is safe to be used

for x2. This is used to prevent readers from incorrectly giving a writer permission to

enter the CS if a writer has aborted and subsequently returns to the Try Section. Each

time a process p executes Line f5 of the algorithm, it atomically switches SafeID and

x2, since x2 is no longer a safe value to be used until process p executes Line f6, where

it tries to grant permission to the writer.

Page 19

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

5.2 Reader's Protocol: Line-by-Line Commentary

We walk through possible steps of a reader r:

r1 When r enters the Try Section, it �rst declares its presence by incrementing C. This

prevents processes at f4 from granting permission to the writer.

r2 r reads D to �nd out the �direction� that it belongs to. This will allow r to determine

whether it has permission to enter the CS at r6 in the case that X = true.

r3 r reads X for the next step.

r4 r attempts to CAS X in order to steal permission away from any potential processes

trying to promote the writer (since this is a reader-priority algorithm).

r5 r checks the current value of X. If it is ¬true, r knows it is permitted to enter the CS. If

it is true, then the writer might have permission to enter the CS, so r must then check

if the Gate to its direction is open in r6.

r6 r sees if the Gate for its direction is open (i.e. Gate = D). If it is, r can go into the CS.

If it isn't, r must wait until the writer �ips the Gate at w7 or wa6.

r7 After the CS, r erases its existence by decrementing C and then running Promote to

see if it can give permission to the writer.

ra1 To abort, r simply executes the Exit Section. Identical to r7.

5.3 Writer's Protocol: Line-by-Line Commentary

Let the writer be denoted as w. Here is a list of the potential steps of the writer:

w1 w reads X for the next step.

w2 w sets X to w's pid, so that in the case that X was true, it is now a non-true value,

informing readers that X is interested in accessing the CS. Note, however, that since

Permit = true at this point and w just set x1 to its own PID, other readers will not

be able to give permission to w yet.

Page 20

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

w3 w reads D in preparation for toggling it.

w4 w toggles D so that D 6= Gate. This ensures that readers who come in after w is granted

permission for the CS will be blocked at r6. Note that if there are still readers r for

which r.d = Gate, the writer will need to wait for all of them to leave the CS before

w can enter the CS. Thus, when w is in the CS, all the readers must have the same

direction.

w5 The Permit is set to x2. Since x2 is only changed at Line f5 (where w is granted

permission), and since the line will not be successfully executed until Permit is set to a

non-true value, we know that w.b = x2 at the time of execution of w5.

wp w tries to give itself permission to enter the CS

w6 Since X can undergo many changes from true to various pids during each call of

Write-Lock, w cannot busy-wait on X because that will produce linear-RMR. Thus, w

waits on Permit instead. At Line w6, w continuously checks to see if Permit = true so

it can enter the CS. Notice how readers can only set Permit to true and nothing else,

so in the Smart-Cache model, w will only have at most two cache misses at Line w6

w7 Upon exiting the CS, w can simply toggle the Gate to let any waiting readers enter.

Note: this will set Gate = D, so new readers will no longer be blocked.

wa1 w can choose to abort at Line w6. In the Abort Section, w �rst sets Permit = true to

stop readers before line f3 from granting w permission to enter the CS.

wa2 w reads X in preparation of the next step

wa3 w checks if x1 is true. If so, w must have been granted permission to enter the CS already,

so it can just execute the Exit Section at wa6. However, if it doesn't have permission

yet, w tries to CAS nPID into x1. This is done to prevent other readers from granting

w permission. If a reader is at Line f4 or f5, it must have read Permit = true before

w executed wa1. Thus, if w CASes nPID into x1 before any readers execute f5, it

guarantees that either w or another reader before f3 has changed the value of x1. Thus,

Line f5 should fail from now on.

Page 21

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

wa4 w checks to see the current value of x1. If x1 is true, a reader must have executed f5

before w executed Line wa3. Thus, w has permission to enter the CS, so it can simply

execute the Exit Section at wa6. Otherwise, if x1 is ¬true, we know that from now on,

processes at f5 will fail. Thus, w will not be granted permission by any other processes

from now on.

wa5 Since it is guaranteed that w will not be given permission by any readers from this point

onwards, w simply reverses D. Notice that until the next iteration of Write-Lock, x1

will stay ¬true, so readers will be able to enter the CS via r5.

w6 Identical to w7

5.4 Promote Procedure: Line-by-Line Commentary

The Promote procedure is executed by either a writer or an exiting reader in order to check if

permission needs to be given to a writer. Let p be the process executing Promote:

f1 p reads X and checks if x1 is true. If it is true, the writer has no intention of accessing

the CS, so p can just leave.

f2 If X isn't true, p attempts to CAS its own pid into x1 to let other processes know

that it is trying to give permission to the writer. This prevents multiple processes from

granting the writer permission at the same time and also allows new readers at Line r4

to alert p not to give the writer permission. If the CAS fails, another process must have

successfully CASed X for one of the above reasons, so p can simply leave. Otherwise, p

proceeds to Line f3.

f3 p checks if Permit is true. If Permit is true, the writer either does not want permission

or has already been granted permission, so p can simply leave. Otherwise, p proceeds

to Line f4.

f4 p checks to C to see if there are other readers between lines r2...r7. If so, p can leave

because one of those readers will eventually grant the writer permission if necessary.

Otherwise, if C = 0, p must be the writer or one of the last exitting readers. So it can

proceed.

Page 22

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

f5 p attempts to grant the writer permission by CASing x1 with true and x2 with p.SafeID.

If the CAS fails, then x1 is either true (in which case the writer has permission already

or is not interested in the CS) or ¬true, in which case the process with pid = x1 is either

in an earlier step of Promote (in which case it can grants the permission to the writer)

or a reader is in the Try Section, in which case the writer should not yet be granted

permission. Otherwise, if the CAS succeeds, the writer now has permission to enter the

CS. Note that p also switches the values of x2 and p.SafeID. This provides the writer

with a safe x2 value to use as a Permit in the future. Also, since the CAS at Line f5

can only be successfully executed once for every call of Write-Lock, only one process

can swap b with its own SafeID, and only one process will have that b value at Line

f6.

f6 p tries to grant permission to the waiting writer. f6 should succeed unless if the writer

decided to abort from Write-Abort during that iteration, in which case p will fail at

Line f6 because p.b will either be set to true or another process' SafeID, which must

be distinct from p.b, which is equal to p.SafeID.

Page 23

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

6 Model Checking

In the prototyping stage of algorithm design, we used a series of speci�cation and modelling tools

(PlusCal, TLA+, and TLC) to verify the correctness of our algorithm.

Appendix Section A shows the PlusCal, TLA+ speci�cation of our abortable reader-priority

single-writer multi-reader algorithm and its invariants.

6.1 PlusCal

PlusCal[13] (formerly +Cal) is a language that allows programmers to formally specify both con-

current and sequential algorithms and translate it into TLA+ (6.2). PlusCal allows programmers

to specify their algorithms at a high level, providing a very �exible granularity of atomicity (for

concurrent systems).

We �rst designed our algorithm in PlusCal and used the built-in translator to translate our

algorithm to TLA+. Since PlusCal is a relatively high-level language built with concurrency in

mind, our experience with PlusCal was very positive and it was easy to make changes con�dently

in PlusCal without having to change much of the code.

6.2 TLA+

TLA+ (Temporal Logic of Actions) [12] is a formal speci�cation language that de�nes an algorithm

in terms of the initial state, subsequent states and their transitions. The advantages of using TLA+

is that languages speci�ed in TLA+ can quickly be debugged or veri�ed using the TLC model

checker (6.3).

For this thesis, now only did we translate our algorithm from PlusCal to TLA+, we also speci�ed

our invariants (see Section 7.2) in TLA+.

6.3 TLC

TLC is a model-checking program that runs simulations of TLA+ speci�cations for every possible

execution up to a certain collision probability and veri�es any assumptions and invariants provided

at each state of the execution. If an assumption or invariant is violated, TLC prints out the execution

where the violation occurred. TLC can verify the correctness of a two-process mutex algorithm to a

Page 24

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

high degree of accuracy within about 2 or 3 minutes. However, the tool has several limitations. First,

it is only able to verify safety properties and not liveness properties. However, since our invariants

are all safety properties, this was not an issue in our case. Second, it can only be run realistically

on small datasets. For example, verifying the correctness of a single-writer 3-reader version of our

algorithm took over 1 day to complete. Finally, since there are in�nitely many states in the system,

TLC will only model-check until the state collision rate becomes su�cient. Moreover, it can only

verify executions for a given number of processes, so it merely serves as a tool for prototyping and

debugging.

In the proof process, TLC was extremely useful to quickly verify new invariants or changes in

invariants. In the case that an invariant is violated in some run, TLC outputs the list of con�g-

urations in the run, which was helpful to understanding where we went wrong. Furthermore, we

used TLC to verify if certain lines in the algorithm could be omitted or changed. While the model

checker could potentially run for a very long time, from our experience, most errors were identi�ed

within the �rst 10 minutes of execution.

Page 25

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

7 Proof of Algorithm

We prove our algorithm correct by invariants. We do this in two parts. First, we will prove that

the set of invariants listed in Section 7.2 is true in every reachable con�guration of the algorithm.

Then, we will consider the invariants as facts and use them to prove the properties of the algorithm.

7.1 Notation

Here are the notations used in de�ning our invariants (derived from [2]):

• We denote the value of a local variable y of process p by p.y. Similarly, we denote the PID

of process p by p.i

• We let X = [x1, x2] for the global variable X so we can address x1 and x2 separately in our

invariants

• PCp denotes the program counter of a process p. As there is only one writer at any time,

we denote it by w and its program counter by PCw. Note that at any time t, PCw ∈

{w1...w7, wa1...wa6, f1...f6} and for a reader r, PCr ∈ {r1...r7, ra1, f1...f6}

• R(condition A) denotes the set of readers which satisfy the condition A, e.g., R(PC ∈

{r3...r6}, d 6= Gate) is the set of all readers r, such that PCr ∈ {r3...r6} and r.d 6= Gate

• P (H), denotes the set of pids corresponding to the processes with their PCs coming from set

H. More formally, P (H) = {p.i : PCp ∈ H}

Page 26

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

7.2 Invariants

Let I = IG∧Iw1,w2∧Iw3,w4∧Iw5∧If1∧If2∧If3,f4∧If5∧If6∧Iw6,wa1∧Iw7,wa6∧Iwa2∧Iwa3∧Iwa4∧Iwa5,

where IG is the global invariant which holds in every reachable con�guration of the algorithm. The

other invariants are denoted by IA , meaning that the invariant applies when PCw ∈ {A}.

Bold font is used to represent lines where the invariant has changed from step to step for ease

of understanding the proof.

IG:

1. C = |R(PC ∈ {r2...r7, ra1})|

2. |{x2} ∪ {SafeIDi}| = n+ 1

Iw1,w2 : PCw ∈ {w1, w2} =⇒

1. Gate = D

2. Permit = true

3. x1 = true =⇒ R(PC ∈ {r3...r6} ∧ d 6=

Gate) = φ

4. x1 6= true =⇒ R(PC = r6 ∧ d 6= Gate) =

φ

5. R(PC ∈ {f4, f5} ∧ x1 = i) = φ

Iw3,w4: PCw ∈ {w3, w4} =⇒

1. Gate = D

2. Permit = true

3. x1 ∈ PID

4. R(PC = r6 ∧ d 6= Gate) = φ

5. R(PC ∈ {f4, f5} ∧ x1 = i) = φ

Iw5: PCw = w5 =⇒

1. Gate = D

2. Permit = true

3. x1 ∈ PID

4. R(PC = r6 ∧ d 6= Gate) = φ

5. R(PC ∈ {f4, f5} ∧ x1 = i) = φ

If1: PCw = f1 =⇒

1. Gate = D

2. Permit ∈ {true, nPID} ∪ PID

3. x1 ∈ (PID ∪ {true})

4. R(PC = f5 ∧ x1 = i) 6= φ =⇒

(a) R(PC ∈ {r6, r7}) = φ

(b) R(PC ∈ {r3...r5}∧d = Gate) =

φ

5. x1 ∈ PID =⇒

(a) R(PC = r6 ∧ d 6= Gate) = φ

(b) Permit = w.b

6. x1 = true =⇒

Page 27

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

(a) R(PC ∈ {r3...r6}∧d = Gate) =

φ

(b) (Permit 6= true =⇒ |R(PC =

f6 ∧ b = Permit)| = 1)

(c) R(PC = r7) = φ

If2: PCw = f2 =⇒

1. Gate = D

2. Permit ∈ {true, nPID} ∪ PID

3. x1 ∈ (PID ∪ {true})

4. R(PC = f5 ∧ x1 = i) 6= φ =⇒

(a) R(PC ∈ {r6, r7}) = φ

(b) R(PC ∈ {r3..r5} ∧ d = Gate) = φ

5. x1 ∈ PID =⇒

(a) R(PC = r6 ∧ d 6= Gate) = φ

(b) Permit = w.b

(c) x1 6= w.a =⇒ R(PC ∈

{r2...r7, ra1, f1}) ∪ R(a =

x1, PC = f2) 6= φ ∨ x1 ∈

P (f3...f5)

6. x1 = true =⇒

(a) R(PC ∈ {r3..r6} ∧ d = Gate) = φ

(b) (Permit 6= true =⇒ |R(PC =

f6 ∧ b = Permit)| = 1)

(c) R(PC = r7) = φ

If3,f4: PCw ∈ {f3, f4} =⇒

1. Gate = D

2. Permit ∈ {true, nPID} ∪ PID

3. x1 ∈ (PID ∪ {true})

4. R(PC = f5 ∧ x1 = i) 6= φ =⇒

(a) R(PC ∈ {r6, r7}) = φ

(b) R(PC ∈ {r3...r5} ∧ d = Gate) = φ

5. x1 ∈ PID =⇒

(a) R(PC = r6 ∧ d 6= Gate) = φ

(b) Permit = w.b

(c) x1 6= w.i =⇒ R(PC ∈

{r2...r7, ra1, f1}) ∪ R(a =

x1, PC = f2) 6= φ ∨ x1 ∈

P (f3...f5)

6. x1 = true =⇒

(a) R(PC ∈ {r3...r6} ∧ d = Gate) = φ

(b) (Permit 6= true =⇒ |R(PC =

f6 ∧ b = Permit)| = 1)

(c) R(PC = r7) = φ

If5: PCw = f5 =⇒

1. Gate = D

2. Permit ∈ {true, nPID} ∪ PID

3. x1 ∈ PID ∪ {true}

4. x1 ∈ PID =⇒

Page 28

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

(a) R(PC = r6) = φ

(b) Permit = w.b

(c) x1 6= w.i =⇒ R(PC ∈

{r2...r7, ra1, f1} ∪ R(a = x1, PC =

f2) 6= φ ∨ x1 ∈ P (f3...f5)

5. R(PC ∈ {r3...r6} ∧ d = Gate) = φ

6. x1 = true =⇒

(a) (Permit 6= true =⇒ |R(PC =

f6 ∧ b = Permit)| = 1)

7. R(PC = r7) = φ

If6: PCw = f6 =⇒

1. Gate = D

2. Permit = w.b

3. x1 = true

4. R(PC ∈ {r3...r6} ∧ d = Gate) = φ

5. R(PC = f6 ∧ b = Permit) = φ

6. R(PC = r7) = φ

Iw6,wa1: PCw ∈ {w6, wa1} =⇒

1. Gate = D

2. Permit ∈ {true, nPID} ∪ PID

3. x1 ∈ (PID ∪ {true})

4. R(PC = f5 ∧ x1 = i) 6= φ =⇒

(a) R(PC ∈ {r6, r7}) = φ

(b) R(PC ∈ {r3...r5} ∧ d = Gate) = φ

5. x1 ∈ PID =⇒

(a) R(PC = r6 ∧ d 6= Gate) = φ

(b) Permit = w.b

(c) R(PC ∈ {r2...r7, ra1, f1} ∪

R(a = x1, PC = f2) 6= φ ∨ x1 ∈

P (f3...f5)

6. x1 = true =⇒

(a) R(PC ∈ {r3...r6} ∧ d = Gate) = φ

(b) (Permit 6= true =⇒ |R(PC =

f6 ∧ b = Permit)| = 1)

(c) R(PC = r7) = φ

Iw7,wa6: PCw ∈ {w7, wa6} =⇒

1. Gate = D

2. Permit = true

3. x1 = true

4. R(PC ∈ {r3...r6} ∧ d = Gate) = φ

5. R(PC = r7) = φ

Iwa2: PCw = wa2 =⇒

1. Gate = D

2. Permit = true

3. x1 ∈ (PID ∪ {true})

4. R(PC = f5 ∧ x1 = i) 6= φ =⇒

Page 29

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

(a) R(PC ∈ {r6, r7}) = φ

(b) R(PC ∈ {r3...r5} ∧ d = Gate) = φ

5. x1 ∈ PID =⇒

(a) R(PC = r6 ∧ d 6= Gate) = φ

6. x1 = true =⇒

(a) R(PC ∈ {r3...r6} ∧ d = Gate) = φ

(b) R(PC = r7) = φ

Iwa3: PCw = wa3 =⇒

1. Gate = D

2. Permit = true

3. x1 ∈ (PID ∪ {true})

4. R(PC = f5 ∧ x1 = i) 6= φ =⇒

(a) R(PC ∈ {r6, r7}) = φ

(b) R(PC ∈ {r3...r5} ∧ d = Gate) = φ

5. x1 ∈ PID =⇒

(a) R(PC = r6 ∧ d 6= Gate) = φ

(b) x1 6= w.a =⇒ R(PC ∈

{f4, f5} ∧ x1 = i) = φ

6. x1 = true =⇒

(a) R(PC ∈ {r3...r6} ∧ d = Gate) = φ

(b) R(PC = r7) = φ

Iwa4: PCw = wa4 =⇒

1. Gate = D

2. Permit = true

3. x1 ∈ (PID ∪ {true, nPID})

4. R(PC ∈ {f4, f5} ∧ x1 = i) = φ

5. x1 6= true =⇒ R(PC = r6 ∧ d 6= Gate) =

φ

6. x1 = true =⇒

(a) R(PC ∈ {r3...r6} ∧ d = Gate) = φ

(b) R(PC = r7) = φ

Iwa5: PCw = wa5 =⇒

1. Gate = D

2. Permit = true

3. x1 6= true

4. R(PC ∈ {f4, f5} ∧ x1 = i) = φ

5. R(PC = r6 ∧ d 6= Gate) = φ

Page 30

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

7.3 Proof of Invariants

To prove the invariants correct, we must prove that:

• I holds in the initial con�guration C0, and

• if I holds in a reachable con�guration C, and if some process takes a step s, I also holds in

C.s.

Lemma 4. I holds in C0.

Proof. Let ReaderSet be the set of all readers and let w represent the writer. It su�ces to prove that

IG and Iw1w2 hold in C0, since all other invariants hold trivially by the fact that in C0, PCw = w1

and ∀r ∈ ReaderSet : PCr = r1.

Claim 5. IG holds in C0:

Proof. Item 1 of IG holds because C = 0 initially and we observe that |R(PC ∈ {r2...r7, ra})| = 0.

Item 2 of IG holds since x2 = nPID and ∀p ∈ ReaderSet∪{w}, p.SafeID = p.i, and nPID /∈ PID

by de�nition.

Claim 6. Iw1,w2 holds in C0:

Proof. Items 1,2 of Iw1,w2 hold by the initial speci�cation of C0. Item 3 holds because ∀r ∈

ReaderSet : PCr = r1. Items 4,5 hold trivially since x1 = true in C0.

Lemma 7. If I holds in C, then I holds in C.s, where C.s is the con�guration after some process p

took a step s in C.

Claim 8. If I holds in C, IG holds in C.s

Proof. Item 1: by simple observation of the algorithm, we see that C is only incremented at Line r1

and decremented at Line r7 or ra1. Thus, C = |R(PC ∈ {r2...r7, ra1})|. Item 2: By observation,

we only switch SafeIDi and x2 at Line f5 atomically, so if Item 2 of IG holds in C, it will continue

to hold in C.s.

Page 31

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

For the rest of the invariants, we will use the following table of proofs for clarity.

In an entry where Invariant = A, w = B, r = D, Step = E, and Item = F, the context of the

proof presented is as follows: If I holds in con�guration C, then Item F of A holds in C.s, where

PCw ∈ B, PCr ∈ D, and E takes a step.

For example, in entry 3 of the invariant table below, the context of the proof is as follows: If I

holds in C, then Item 3 of Iw1,w2 holds in C.s when PCw ∈ {w1, w2}, PCr ∈ {r2}, and r takes a step.

Invariant w r Step Item Proof

Iw1,w2 w1 - w all Since Iw1,w2 holds in C, it continues to hold in C.s

after step w1. From here onwards, we will simply say

this is obvious.

Iw1,w2 w1,

w2

r1, r3, r6,

r7, ra1, f1,

f4, f6

r all obvious

Iw1,w2 w1,

w2

r2 r 3 In C, Gate = D by Iw1,w2 , and d=D by step r2, so

d=Gate in C.s, as req'd

Iw1,w2 w1,

w2

r2 r rest obvious

Iw1,w2 w1,

w2

r4 r 3,4 If x1 = true in C, the global vars remain unchanged

in C.s, so Items 3, 4 will hold.

If x1 6= true in C, the CAS in step r4 will succeed but

still, x1 6= true in C.s, so Items 3, 4 will hold.

Iw1,w2 w1,

w2

r4 r rest obvious

Iw1,w2 w1,

w2

r5 r 3,4 If x1 = true in C, Item 3 in C.s follows from Item 3 of

Iw1,w2 in C and Item 4 holds trivially.

If x1 6= true in C, by step r5, r will not enter Line r6,

trivially satisfying Items 3, 4.

Page 32

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Iw1,w2 w1,

w2

r5 r rest obvious

Iw1,w2 w1,

w2

r5 r 3,4 Proof analogous to that of Iw1,w2, step r4, Items 3, 4

Iw1,w2 w1,

w2

r5 r rest obvious

Iw1,w2 w1,

w2

f3 r 5 In C, since Permit = true by Item 2 of Iw1,w2, r will

not step into Line f4, satisfying Item 5

Iw1,w2 w1,

w2

f3 r rest obvious

Iw1,w2 w1,

w2

f5 r 3,4 By Item 5 of Iw1,w2 in C, the CAS in step f5 must

fail. Thus, r will not step into Line f6.

Iw1,w2 w1,

w2

f5 r rest obvious

Iw3,w4 w2 - w 3 Follows from step w2

Iw3,w4 w2 - w 4 Follows from Item 4 of Iw1,w2 and step w2

Iw3,w4 w2 - w rest obvious

Iw3,w4 w3 - w all obvious

Iw3,w4 w3,

w4

all r all Proof analogous to that of Iw1,w2

Iw5 w4 - w 1 Follows from Item 1 of Iw3,w4 and step w4

Iw5 w4 - w rest obvious

Iw5 w5 all r Proof analogous to that of Iw1,w2

If1 w5 - w 2 Follows from step w5 and the fact that

x2 ∈ {nPID} ∪ PIDs.

If1 w5 - w 4 Follows trivially from Item 5 in Iw5

If1 w5 - w 5a Follows from Item 4 of Iw5

If1 w5 - w 5b Follows from step w5

Page 33

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

If1 w5 - w 6 Trivially holds by Item 3 of Iw5

If1 w5 - w rest obvious

If1 f1 r1, r3, r7,

ra1, f1, f3

r all obvious

If1 f1 r2 r 4b,

6a

d = D by step r2, and Gate = D in C by If1, so

d 6= Gate in C.s

If1 f1 r2 r rest obvious

If1 f1 r4 r all Proof analogous to that of Iw1,w2, step r4

If1 f1 r5 r 4a We will show that if there is a reader at r5,

R(PC = f5 ∧ x1 = i) = φ, so Item 4a will trivially

hold.

Assume the contradiction and let rf5 be the reader

for which PCrf5 = f5 and x1 = rf5.i and PCr = r5

at time t. We observe that rf5 must have executed

Line f4 before r executed Line r1 because rf5 read C

to be 0. Thus, the value of x1 that r read at Line r3

must be rf5.i or another pid that overwrote rf5.i. At

Line r4, either r successfully CASes and overwrites

the value of x1, or another process wrote a di�erent

value into x1. From inspection of the code, since no

other processes would write rf5.i into x1 besides rf5

itself, the value of x1 6= rf5.i at time t, which is a

contradiction.

If1 f1 r5 r 5a If x1 = true, Item 5a trivially holds

If x1 6= true, by step r5, r will not step into r6

If1 f1 r5 r 6a Follows from Item 6a of If1 in C

If1 f1 r5 r 6c If x1 6= true, Item 6c trivially holds

If x1 = true, by step r5, r will not step into r7

Page 34

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

If1 f1 r5 r rest obvious

If1 f1 r6 r 4a Follows from Item 4a of If1 in C

If1 f1 r6 r 6c Follows from Item 6a of If1 in C

If1 f1 r6 r rest obvious

If1 f1 f2 r all Proof analogous to that of Iw1,w2, step r4

If1 f1 f4 r 4 Follows from Item 1 of IG, and step f4

If1 f1 f4 r rest obvious

If1 f1 f5 r 6a Follows from Item 4b of If1

If1 f1 f5 r 6b Assume by contradiction that in C.s,

Permit 6= true =⇒ |R(PC = f6∧b = Permit)| = 2.

Since SafeID = b by step f5, the two processes in

R(PC = f6 ∧ b = Permit) must have the same

SafeID, which contradicts Item 2 of IG

If1 f1 f5 r 6c Follows from Item 4a of If1

If1 f1 f5 r rest obvious

Page 35

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

If1 f1 f6 r 5b We will show that the CAS at Line f6 will only

succeed if x1 = true.

Assume by contradiction that r successfully CASes

Permit at Line f6 at time t and x1 6= true. We know

that r had successfully set x1 to true in step f5. By

observation of the code, only the writer can change

x1 from true to a non-true value. Thus, the writer

must have executed lines w2 to just before f1 after r

executed Line f5. Thus, it must have executed Line

w5, setting Permit to x2. However, since

b = r.SafeID by step f5 of r, by Item 2 of IG,

x2 6= r.SafeID, so x2 6= r.b while r is at Line f6.

Thus, the CAS at Line f6 fails, which is a

contradiction.

If2 f1 - w 5c Trivially true since w.a = x1 by step f1

If2 f1 - w rest obvious

If2 f2 r1...r3,

r5...r7, ra1,

f6

r all Analogous to proof for If1

Note: Item 5c is satis�ed for these steps by Item 5c

of If2 being satis�ed in C

If2 f2 r4 r 5c r satis�es Item 5c

If2 f2 r4 r rest Analogous to proof for If1

If2 f2 f1 r 5c If r.a 6= true in C, then r will enter the set

R(a = x1, PC = f2) by step f1, satisifying Item 5c.

If r.a = true in C, since x1 = r.a (apparent in step

f1), x1 = true, so Item 5 is satis�ed trivially.

If2 f2 f1 r rest Analogous to proof for If1

Page 36

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

If2 f2 f2 r 5c If x1 = r.a in C, then it will satisfy x1 ∈ P (f3...f5) in

C.s by Item 5c of If2 and step f2.

If x1 6= r.a in C, by inspection of Item 5c of If2 and

step f2, r must not b the reader satisfying Item 5c in

C. Thus, there must exist another reader r′ satis�es

Item 5c in C and thus, r′ will still satisfy Item 5c in

C.s.

If2 f2 f2 r rest Analogous to proof for If1

If2 f2 f3 r 5c If x /∈ PID in C, Item 5 is satis�ed trivially.

If x ∈ PID in C, by Item 5b If2, Permit = w.b, so

step f3 must succeed, satisfying Item 5c.

If2 f2 f3 r rest Analogous to proof for If1

If2 f2 f4 r 5c If C = 0 in C, step f4 succeeds, satisfying 5c.

If C 6= 0 in C, by IG, |R(PC ∈ {r2...r7, ra1})| 6= 0.

Since the cardinality of the set is always positive,

some process in R(PC ∈ {r2...r7, ra1} satis�es If2 in

C and will satisfy If2 in C.s also.

If2 f2 f4 r rest Analogous to proof for If1

If2 f2 f5 r 5 If x1 = r.i in C, x1 = true in C.s by step f5, so Item

5 is satis�ed trivially.

If x1 6= r.i in C, by inspection of Item 5c of If2 and

step f5, r must not be the reader satisfying Item 5c

in C. Thus, there must exist another reader satisfying

Item 5c in C and will continue to satisfy 5c in C.s.

If2 f2 f5 r rest Analogous to proof for If1

If3,f4 f2 - w 5c Trivially true since x1 = w.i by step f2

If3,f4 f2 - w rest Proof analogous to that of If2

If3,f4 f3 - w all Proof analogous to that of If2

Page 37

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

If3,f4 f3,

f4

all r all Proof analogous to that of If2

If5 f4 - w 4a, 5 Follows from Item 1 of IG since C = 0

If5 f4 - w rest Proof analogous to that of If3,f4 or obvious

If5 f5 r1, r3...r7,

ra1, f1...f6

r all Proof analogous to that of If3,f4 or obvious

If5 f5 r2 r 5 d = D by step r2, and Gate = D in C by If5, so

d 6= Gate in C.s, as req'd

If6 f5 - w 2,3 Follows from step f5

If6 f5 - w 5 Assume by contradiction that in C.s,

R(PC = f6 ∧ b = Permit) 6= φ. Since

w.SafeID = w.b by step f5, the process(es) in

R(PC = f6 ∧ b = Permit) must have the same

SafeID as w, which contradicts Item 2 of IG.

If6 f5 - w rest Proof analogous to that of If5 or obvious

If6 f6 r1...r7, ra1,

f1...f4, f6

r all Proof analogous to that of If5 or obvious

Note: all CAS steps will fail because x1 = true

If6 f6 f5 r 5 Assume by contradiction that in C.s,

r ∈ R(PC = f6 ∧ b = Permit). Since

w.SafeID = w.b by step f5, r must have the same

SafeID as w, which contradicts Item 2 of IG.

If6 f6 f5 r rest Proof analogous to that of If5 or obvious

Iw6,wa1 f1 - w 5c Trivial because x1 = true from step f1

Iw6,wa1 f1 - w rest Proof analogous to that of If1 or obvious

Iw6,wa1 f2 - w 5c In order for the CAS to fail, x1 6= w.a in C, so Item

5c was satis�ed by another reader in C by If2 and

will satisfy Item 5c in C.s

Iw6,wa1 f2 - w rest Proof analogous to that of If2 or obvious

Page 38

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Iw6,wa1 f3 - w 5c If x /∈ PID in C, Item 5 is satis�ed trivially in C.s.

If x ∈ PID in C, by Item 5b of If3,f4, Permit = w.b,

so step f3 must have succeeded, so w would not have

stepped into w6

Iw6,wa1 f3 - w rest Proof analogous to that of If3,f4 or obvious

Iw6,wa1 f4 - w 5c In order for w to step from f4 to w6 or wa1, C 6= 0

in C. By IG, |R(PC ∈ {r2...r7, ra1})| 6= 0. Since the

cardinality of the set is always positive, some reader

must have satis�ed Item 5c of If3,f4 in C and will

satisfy Item 5c of Iw6,wa1 in C.s.

Iw6,wa1 f4 - w rest Proof analogous to that of If3,f4 or obvious

Iw6,wa1 f5 - w 4a If x1 = true in C, Item 4 holds trivially.

If x1 ∈ PID in C, Item 4a follows from Item 4a and

Item 7 in If5.

Iw6,wa1 f5 - w 4b Follows from Item 5 of If5

Iw6,wa1 f5 - w 5a Satis�ed by Item 4a of If5 in C

Iw6,wa1 f5 - w 5b Satis�ed by Item 4b of If5 in C

Iw6,wa1 f5 - w 5c Since the CAS in step f5 failed, x1 6= w.i in C, so

another reader must have satis�ed Item 4c of If5, and

will satisfy Item 5c

Iw6,wa1 f5 - w rest Proof analogous to that of If5 or obvious

Iw6,wa1 f6 - w 4, 5 Trivially holds since x1 = true in C by Item 3 of If6

Iw6,wa1 f6 - w 6a Follows from Item 4 in If6

Iw6,wa1 f6 - w 6b Trivially holds since Permit = w.b in C by Item 2 of

If6, after step f6, Permit = true in C.s

Iw6,wa1 f6 - w 6c Follows from Item 6 in If6

Iw6,wa1 f6 - w rest Proof analogous to that of If6 or obvious

Iw6,wa1 w6 - w all Proof analogous to that of If2 or obvious

Page 39

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Iw6,wa1 w6,

wa1

all r all Proof analogous to that of If2 or obvious

Iwa2 wa1 - w 2 Follows from step wa1

Iwa2 wa1 - w 5a, 6 Follows from Item 5, 6 of Iw6,wa1

Iwa2 wa1 - w rest Proof analogous to that of Iw6,wa1 or obvious

Iwa2 wa2 all r all Proof analogous to that of Iw6,wa1 or obvious

Note: Since Permit = true by Item 2 of Iwa2, the

CAS in step f6 must fail

Iwa3 wa2 - w 5b x1 = w.a by step wa2

Iwa3 wa2 - w rest Proof analogous to that of Iwa2 or obvious

Iwa3 wa3 r1...r4, ra1,

f1, f2, f4...f6

r all Proof analogous to that of Iwa2 or obvious

Iwa3 wa3 f3 r 5b Since Permit = true by Iwa3 in C, PCr cannot be in

{f4, f5} in C.s, so Item 5b holds.

Iwa3 wa3 f3 r rest Proof analogous to that of Iwa2 or obvious

Iwa4 wa3 - w 4 Case 1 (x1 6= w.a in C): follows from Item 5b of Iwa3

Case 2 (x1 = w.a in C): x1 = nPID in C.s, satisfying

Item 4

Iwa4 wa3 - w rest Proof analogous to that of Iwa3 or obvious

Iwa4 wa4 all r all Proof analogous to that of Iwa3 or obvious

Iwa5 wa4 - w 3 Follows from step wa4

Iwa5 wa4 - w 5 Follows from step wa4 and Item 5 of Iwa4

Iwa5 wa4 - w rest Proof analogous to that of Iwa4 or obvious

Iwa5 wa5 r1...r6, ra1,

f1...f4, f6

r all Proof analogous to that of Iwa4 or obvious

Iwa5 wa5 f5 r 3 The CAS at Line f5 must fail because of Item 4 in

Iwa5 in C

Iwa5 wa5 f5 r rest Proof analogous to that of Iwa4 or obvious

Page 40

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Iw7,wa6 wa3 - w 3 Follows from step wa3

Item 4,5:

Iw7,wa6 wa3 - w 4, 5 Follows from Item 6 in Iwa3 and the fact that

x1 = true by step wa3

Iw7,wa6 wa3 - w rest obvious

Iw7,wa6 wa4 - w 3 Follows from step wa4

Iw7,wa6 wa4 - w 4, 5 Follows from Item 6 in Iwa4 and the fact that

x1 = true by step wa4

Iw7,wa6 wa4 - w rest obvious

Iw1,w2 w7,

wa6

- w 1 Follows from Item 1 in Iw7,wa6 and step w7 or step

wa6

Iw1,w2 w7,

wa6

- w 3 Follows from Item 3, 4 in Iw7,wa6

Iw1,w2 w7,

wa6

- w 4, 5 Trivially holds since x1 = true from Item 3 of Iw7,wa6

Iw1,w2 w7,

wa6

- w rest obvious

Iw1,w2 wa5 - w 1 Follows from Item 1 in Iwa5 and step wa5

Iw1,w2 wa5 - w 3 Trivially holds since x1 6= true from Item 3 of Iw5

Iw1,w2 wa5 - w 4 Follows from Item 3,5 in Iwa5

Iw1,w2 wa5 - w 5 Follows from Item 4 in Iwa5

Iw1,w2 wa5 - w rest obvious

7.4 Proof of Properties

Lemma 9. (Mutual Exclusion): A reader r and the writer w cannot be in the CS together

Proof. One can easily see from Iw7 that there is no reader r in the CS(PCr = r7)

Page 41

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Lemma 10. (Bounded Exit): There is an integer b such that in every run, every process completes

the Exit Section in at most b of its steps.

Proof. From inspection of Figure 2 on page 18, w7, r7, and f1..f6 can be executed in a bounded

number of steps. Hence the lemma.

Lemma 11. (Concurrent Entering): There is an integer b such that, if σ is any run from a reachable

con�guration such that all writers are in the Remainder Section in every con�guration in σ, then

every read attempt in σ executes at most b steps of the Try Section before entering the CS.

Proof. Let b = 7. Assume by contradiction that there is some reader r who takes more than 7

steps to enter the CS from the Try Section, then r must have stepped multiple times at PCr = r6,

meaning that r.d 6= Gate at some point when r6 was executed. Since PCw = w1, by inspection of

Item 3, 4 of Iw1,w2, R(PC ∈ {r3...r6} ∧ r.d 6= Gate) = φ, which is a contradiction.

The following lemmas will be useful to prove the rest of the properties:

Lemma 12. If at time t, a reader r is at Line r6 and PCw = w1 then Gate = D while r is at line

r6.

Proof. As PCr = r6 ∧ PCw = w1, from Iw1,w2, one can see that r.d = Gate = D. W.L.O.G., let

d = D = 1. To prove this lemma we will show that Gate is not changed while r is at Line r6. Say

Gate is set to 0, while r is still at Line r6. It means w executes Gate ← 0 (w7 or wa6) at some

time after t, such that PCr = r6, D = 0 at t. But by item 4 of I7, R(d = 1, PC ∈ {r3...r6}) = φ,

which is a contradiction.

Lemma 13. If at time t, a reader r is at Line r6 and some reader is in the CS, then r is CS-enabled

Proof. Looking through all of the invariants, in any invariant step that does not state R(PC =

r7) = φ as a property, R(PC = r6 ∧ d 6= Gate) = φ is a property, so r must be enabled. Hence the

lemma.

Lemma 14. (Unstoppable Reader Property) If a reader r is in the waiting room (PCr = r6) at

time t, then r is CS-enabled at t if any of the following holds:

1. if some reader is in CS at time t

2. r >rp w, and w is not in the CS or Exit Section

Page 42

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Proof. The �rst case is a mere consequence of Lemma 13. For the second case, as r >rp w, it

means that either r doorway precedes w, or some reader is in the CS when r is in the waiting room

(PCr = r6). In the former case it means that there is some time when PCr = r6 and PCw = w1,

hence by Lemma 12, r should be CS-enabled. In the latter case there is some time when PCr = r6

and some other reader is in the CS, hence by Lemma 13, r should be CS-enabled.

Lemma 15. (First-In-First-Enabled) Let r and r′ be any two read attempts in a run such that r

doorway precedes that of r′ . If r′ enters the CS before r, then r is enabled to enter the CS at the

time r′ enters the CS.

Proof. FIFE follows directly from Item 1 of the Unstoppable Reader Property.

Lemma 16. (Reader Priority Property): If an algorithm supports only one Writer and satis�es

Mutual Exclusion and Unstoppable Reader Property, then the algorithm satis�es Reader Priority

property. (reproduced in verbatim from [2])

Proof. Say r and w are read and write attempts respectively, such that r >rp w. Assume for

contradiction that w enters the CS before r, we'll call earliest such con�curation C′′. Say C′ is the

earliest con�guration in which r is in the waiting room. By the de�nition of r >rp w, w is not in the

CS or Exit Section in C′. This means that between C′ and C′′, there is an intermediate con�guration

C, such that w is in the Try Section and r is in the waiting room in C. As r >rp w and the fact

that there is only one writer in the system, by the Unstoppable Reader property, we get that r is

CS-enabled in C. Hence, r is also CS-enabled in C′′ which violates Mutal Exclusion.

Before we prove Livelock freedom we show that no reader starves.

Lemma 17. If a reader r is in the Try Section and no process crashes, then r eventually enters the

CS.

Proof. Suppose r stays in the Try Section forever. Then we �rst claim that the writer w also stays

in the Try Section forever. This is true because, if r keeps taking steps it will eventually complete

its doorway. Now if w ever enters the remainder section (PCw = w1), by Lemma 12, r will be

CS-enabled. And by assumptions of the lemma, as no process crashes, one can see both r and

w will be in the Try section forever after some time t, which meansPCr = r6, PCw = w6, and

Page 43

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Permit 6= true forever after t. From Invariant Iw6, X 6= true =⇒ R(PC = r6∧d 6= Gate) = φ, so

X must be true. However, if X is true, we know that R(PC = f6∧b = Permit)| = 1, so eventually

it will set Permit = true, which contradicts the fact that Permit 6= true forever after t.

Lemma 18. (Livelock Freedom) If some process is in the Try Section and no process crashes, then

some process enters the CS eventually.

Proof. In the previous lemma we have shown that no reader starves. So to prove this lemma, we

show that if no reader is active for all times after some time t, then the writer cannot stay in the

Try Section forever. Say the writer stays in the Try Section forever after all time t′ > t. As the

writer can only stay at Line w6 in the Try Section forever, it means that there is some t∗ > t′ > t,

such that for all times after t∗, PCw = w6, Permit 6= true and no readers are active.

We �rst claim that X = true at t∗, as PCw = w6 at t∗, by Item 5c of Iw6, one can see that

some reader should be active at t∗, which is a contradiction.

So X 6= true∧PCw = w6∧Permit 6= true. By Item 6b of I6, one can again see that some reader

should be active, which is a contradiction. Hence, it means that in the absence of the readers, the

writer cannot stay in the Try Section forever.

Lemma 19. (Wait-Free Reader Abort) A reader in a busy-wait loop in the Try Section can decide

to execute the Read-Abort function. We require that a process be able to complete the execution of

Read-Abort in a bounded number of its own steps and subsequently enter the Remainder Section.

Proof. From inspection of Figure 2 on page 18, Read−Aborti() clearly ful�ls this property.

Lemma 20. (Wait-Free Writer Abort) A writer in a busy-wait loop in the Try Section can decide

to execute the Write-Abort function. We require that a process be able to complete the execution of

Write-Abort in a bounded number of its own steps and subsequently enter the Remainder Section.

Proof. From inspection of Figure 2 on page 18, Write−Aborti() clearly ful�ls this property.

Lemma 21. (Constant RMR Complexity in the Smart-Cache Model) The algorithm given in Figure

2 on page 18 has O(1) RMR complexity in the Smart-Cache CC model (See Section 3.4).

Proof. From the algorithm, we observe that all lines except Lines w6 and r6 have a constant number

of steps.

Page 44

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

Consider Line w6. Permit is only ever set to ¬true by the writer. Since there is only one writer

and readers are only capable of setting Permit to true, the writer can only have a cache miss at w6

at most 2 times (once initially, and once when Permit changes to true).

Now consider Line r6. W.L.O.G., say r is waiting for Gate to be set to 1. By the arguments

similar to the proof of Lemma 12, we know that once the Gate is set to 1 while r is still at Line

r6, it will not change to 0. Also, by the inspection of the algorithm, one can see that Gate is never

overwritten with the same value (either at Line w7 or wa6) . More precisely, the writer writes

alternating values (1 and 0) into the Gate. Combining the two facts, one can see that while r is

at Line r6, only a single write operation is performed on Gate. Thus, the writer will have a cache

miss at r6 at most 2 times (once initially, and once when Gate changes).

Recall that in the Conservative-Cache model, in any CAS(A, u, v) operation where a CAS fails

(and thus not changing the value of A), the system may or may not invalidate any caches containing

A. In the algorithm presented in Figure 2 on page 18, this generates a worst-case RMR-complexity

of O(nr), where nr is the number of readers.

Example 22. Consider the case when there is a reader r1 in the CS. In the meantime, a writer w

enters the Try Section, executes up to Line w6 and sleeps. At this time, r1 executes up to Line f6

and sleeps. w then decides to abort. At this time, another reader r2 enters the CS and w enters the

Try Section again. If this cycle repeats, we could have an execution where nr−1 readers are at Line

f6 and 1 reader is in the CS. If at this point, w arrives at Line w6, X 6= true, and Permit = w.b

by Iw6. If each readers now wake up and execute Line f6 (and experience a CAS failure), in the

Conservative-Cache model, w could potentially experience nr − 1 cache misses if w wakes up in

between each reader's execution of Line f6.

However, we can prove that our algorithm has constant amortized RMR complexity in the

Conservative-Cache model by associating potential CAS failures with writer aborts.

Lemma 23. (Constant Amortized RMR Complexity: Conservative-Cache Model) The algorithm

given in Figure 2 on page 18 has O(1) amortized RMR complexity in the Conservative-Cache CC

model.

Proof. We will show that each CAS failure incurred by the writer w at Line w6 can be attributed

Page 45

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

to a previous call of Write− Lock. Since from observation of the code, w is the only process that

can change X from true to a non-true value (at Line w2), Line f5 can be successfully completed

at most once for every call of Write-Lock. (Note, however, because w can abort, not all of the

Write-Lock calls incur the cache miss in its designated iteration). Nonetheless, each Write-Lock

call incurs a constant amortized RMR complexity.

Page 46

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

8 Worst-case O(1)-RMR in Conservative Cache Model

Provided that pids are contiguous, we can modify our algorithm to have constant RMR for up to

R readers (where R is a constant), beyond which the algorithm will have a worst-case O(nr
R)-RMR,

where nr is the number of readers executing the algorithm. Thus, in a case where nr < R, we will

incur constant RMR.

To do this, we modify Permit to be an array of size R and replace all instances of Permit in

Figure 2 on page 18 with Permit[b%R].

Thus, at any iteration of Write−Lock, the writer will only be waiting on the Permit at index

x2%R, which can have a maximum of nr
R readers at Line f6 that map to index x2%R. However,

from IG, we know that each reader will have a distinct SafeID, and thus, a distinct b value (from

step f5), only one reader is poised to have a successful CAS at Line f6 at any given time.

This variation of the algorithm can also be proved in a similar manner using invariants. However,

that is beyond the scope of this thesis and we shall be omitting this proof.

Page 47

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

9 Generalization to Multi-Reader Multi-Writer Algorithm

Given any Abortable Mutual Exclusion algorithm Z satisfying FCFS, Bounded Exit, and Starvation

Freedom, we can simply generate the abortable reader-priority multi-writer multi-reader algorithm

as follows:

Let the Write-Lock procedure in Figure 2 on page 18 be referred to as SW -Write-Lock in

the code below and let Abortable-Mutex-Locki() and Abortable-Mutex-Unlocki() be the Lock and

Unlock functions of Z:

procedure Write-Locki(){

Abortable-Mutex-Locki()

SW-Write-Locki()

Abortable-Mutex-Unlocki()

}

The Read-Lock procedure remains the same as in Figure 2 on page 18.

It is easy to observe that properties ensuring reader priority and liveness (P4, P5, RP1, RP2, A1)

are ful�lled by this algorithm, as writers do not obstruct readers in the execution of Z. Moreover,

P1, P2, P3, P6, and A2 are satis�ed because the same properties also hold in Z.

The RMR-complexity of the resulting algorithm is the same as that of Z, since our multi-reader

single-writer algorithm has constant-RMR complexity. This RMR limitation is acceptable because

in the absence of readers, the abortable multi-reader multi-writer algorithm is equivalent to the

abortable mutual exclusion problem. For example, we can let Z be the abortable mutual exclusion

algorithm by Jayanti [10], which produces a min(k, log(nw))-RMR algorithm for abortable multi-

reader multi-writer algorithm (where k is the number of writers contending to enter the CS and

nw is the total number of writers). To our knowledge, this is the most e�cient abortable mutual-

exclusion algorithm for the CC system and it uses LL/SC objects (which can be implemented by

CAS [17]).

Page 48

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

10 Conclusion

The reader-writer problem is a variation of the mutual exclusion problem where processes are divided

into readers and writers such that when a writer is accessing a shared resource, no other processes

can access the resource, but may readers can access the resource at the same time.

In this thesis, we presented a constant-RMR abortable reader-priority reader-writer algorithm for

Smart-Cache Cache-Coherent Systems. We also showed that this algorithm has amortized constant-

RMR in Conservative-Cache Systems. We veri�ed the model empirically using PlusCal/TLA+ to

specify the algorithm and model-checking it in TLC. We then proved the algorithm using invariants.

In the process of verifying this algorithm, we felt that it was inadequate to prove the algorithm with-

out using invariants, since temporal arguments about a su�ciently long algorithm and arguments

would be harder to understand and could easily be incorrect. However, it is often also laborious to

manually check invariants to ensure the correctness of an invariant proof. In this thesis, an exten-

sive attempt was made to prove the algorithm using TLAPS (TLA+ Proof System) [5]. We found

TLAPS to still be in its developmental stages, as it does not reason about concepts necessary to our

proof, such as set cardinality. Even besides that, perhaps due to unfamiliarity with TLAPS, we did

not successfully produce a TLAPS proof of the algorithm. Regardless, we found model checking to

be a powerful veri�cation to give us con�dence in our algorithm and invariants.

Moreover, we provided a constant-RMR version of the algorithm for up to R readers (where R

is a constant), beyond which the RMR-complexity algorithm will be O(nr
R), where nr is the number

of readers in the algorithm.

We also showed how to generalize the algorithm into a multi-reader multi-writer algorithm which

uses (and is dependent on the time complexity of) any given abortable mutual exclusion algorithm.

Page 49

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

11 Acknowledgments

First and foremost, I want to extend my thanks to my advisor, Professor Prasad Jayanti, and his

loving family, who not only provided academic and intellectual support through one of the most

challenging and exciting experiences of my time at Dartmouth, but also treated me like a member

of their family and left me with a broader understanding of culture and spirituality. The time we

that we spent together, be it the hours of spent verifying invariants, learning about the Puja, or

experiencing the tension of the moment before India won the Cricket World Cup, are moments that

will stay with me for life. Thank you for being so amazing!

I would also like to give my warmest thanks to my thesis committee members. First, to Professor

Thomas Cormen, who has been my biggest in�uence at Dartmouth, for his continual support and

encouragement to pursue computer science since my freshman fall at Dartmouth. Not only was he

a great mentor, but he made me feel welcome and accepted in a major that I was very uncertain

about. Truly, thank you for everything.

And also, to Professor Andrew Campbell, for being a wonderful mentor and friend who opened

my eyes to the world of hacking. Never did I think I could even understand, not to mention build,

a search engine, network stack, and bittorrent in mere weeks. Thank you for bringing excitement

into the world of CS!

I would like to thank the members of the Dartmouth Concurrent Research Group (DCRG),

Jack Bowman, Jonathan Choi, Michael Diamond, Matthew Elkherj, and Zhiyu Liu for all our great

discussions and intellectual pursuit. It was wonderful getting to know all of you and going through

the same experience together. I learnt so much from each one of you and our time together has truly

made me even more excited about concurrent algorithms! I wish you all the best in your future

endeavors.

Also, a big thank you to Ranganath Kondapally and Vibhor Bhatt for being wonderful mentors

throughout my discovery of the world of algorithms and theory in computer science. I have lost

count of the number of times I crowded your o�ce hours, but had it not been for you two, I might

have ended up being a biology major instead.

To my loving and caring friends who shared so much laughter and tears with me during the past

four years, this would not have been possible without your love and support. Thank you so much.

Page 50

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

And �nally, to my loving parents who were behind me for the past 21 years of my life, thank

you for all your love and sacri�ces. There are no words to express my gratitude towards you, but

truly, thank you for everything that you have done for me.

Page 51

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

References

[1] 3 volume set of intel 64 and ia-32 architectures software developer's manuals, May 2011.

[2] Bhatt, V., and Jayanti, P. Constant RMR Solutions to Reader Writer Synchronization.

Tech. rep.

[3] Brandenburg, B. B., and Anderson, J. H. Reader-writer synchronization for shared-

memory multiprocessor real-time systems. In Proceedings of the 2009 21st Euromicro Confer-

ence on Real-Time Systems (Washington, DC, USA, 2009), IEEE Computer Society, pp. 184�

193.

[4] Brandenburg, B. B., and Anderson, J. H. Spin-based reader-writer synchronization for

multiprocessor real-time systems. Real-time Systems 46 (2010), 25�87.

[5] Chaudhuri, K., Doligez, D., Lamport, L., and Merz, S. The tla+proof system: build-

ing a heterogeneous veri�cation platform. In Proceedings of the 7th International colloquium

conference on Theoretical aspects of computing (Berlin, Heidelberg, 2010), ICTAC'10, Springer-

Verlag, pp. 44�44.

[6] Courtois, P. J., Heymans, F., and Parnas, D. L. Concurrent control with "readers" and

"writers". Commun. ACM 14 (October 1971), 667�668.

[7] Danek, R., and Hadzilacos, V. Local-spin group mutual exclusion algorithms. In DISC

(2004), R. Guerraoui, Ed., vol. 3274 of Lecture Notes in Computer Science, Springer, pp. 71�85.

[8] Danek, R., and Hadzilacos, V. Local-spin group mutual exclusion algorithms. InWorkshop

on Distributed Algorithms/International Symposium on Distributed Computing (2004), pp. 71�

85.

[9] Dijkstra, E. W. Solution of a problem in concurrent programming control. Commun. ACM

8 (September 1965), 569�.

Page 52

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

[10] Jayanti, P. Adaptive and e�cient abortable mutual exclusion. In Proceedings of the twenty-

second annual symposium on Principles of distributed computing (New York, NY, USA, 2003),

PODC '03, ACM, pp. 295�304.

[11] Krieger, O., Stumm, M., Unrau, R., and Hanna, J. A fair fast scalable reader-writer

lock. In In Proceedings of the 1993 International Conference on Parallel Processing (1993),

CRC Press, pp. 201�204.

[12] Lamport, L. Specifying Systems, The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley, 2002.

[13] Lamport, L. The pluscal algorithm language. In Proceedings of the 6th International Collo-

quium on Theoretical Aspects of Computing (Berlin, Heidelberg, 2009), ICTAC '09, Springer-

Verlag, pp. 36�60.

[14] Lee, H. Fast local-spin abortable mutual exclusion with bounded space. In Proceedings of the

14th international conference on Principles of distributed systems (Berlin, Heidelberg, 2010),

OPODIS'10, Springer-Verlag, pp. 364�379.

[15] Marejka, R. Atomic sparc: Using the sparc atomic instructions, Mar. 2008.

[16] Mellor-crummey, J. M., and T, M. L. S. Scalable reader-writer synchronization for

shared-memory multiprocessors. In In Proc. of the 3rd ACM SIGPLAN symposium on (1991),

pp. 106�113.

[17] Michael, M. Practical lock-free and wait-free ll/sc/vl implementations using 64-bit cas. In

Distributed Computing, R. Guerraoui, Ed., vol. 3274 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 2004, pp. 144�158.

[18] Scott, M. L., and Scherer, W. N. Scalable queue-based spin locks with timeout. In

Proceedings of the eighth ACM SIGPLAN symposium on Principles and practices of parallel

programming (New York, NY, USA, 2001), PPoPP '01, ACM, pp. 44�52.

Page 53

Nan Zheng Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm 2 June 2011

A Appendix

A.1 Algorithm and Invariants Speci�ed in PlusCal and TLA+

Page 54

module abortable
extends Naturals, FiniteSets, TLC
constants WriterProc, ReaderProc, nPID , true
TLC complains if we use true/false in X1 and Permit , so let us

define 0 = true and 1 = false. Thus, WriterProc and ReaderProc cannot contain {0, 1}

assume ProcType
∆
= ∧WriterProc ∈ (Nat \ {true, nPID})
∧ ReaderProc ⊆ (Nat \ {true, nPID})
∧ {WriterProc} ∩ ReaderProc = {}
∧ nPID ∈ Nat
∧ true ∈ Nat

PlusCal Algorithm

–algorithm ReaderPriority{
\ ∗GLOBAL VARIABLES

variables D = false,

Gate = false,

X1 = true,

X2 = nPID ,

Permit = true,

C = 0;

\ ∗WRITE − LOCK CODE

process(writerprocess = WriterProc)

variables wSafeID = WriterProc, wa, wb, prevD , currD ; {
w ncs : while(true){
w1 : wb := X2;

w2 : X1 := WriterProc;

X2 := wb;

w3 : prevD := D ;

currD := ¬prevD ;

w4 : D := currD ;

w5 : Permit := wb;

\ ∗ Promote(i).Not a procedure so we can reason without the stack

wf 1 : wa := X1;

wb := X2;

if (wa 6= true){
wf 2 : if (X1 = wa ∧X2 = wb){ \ ∗ CAS(X , [wa, wb], [i , wb])

X1 := WriterProc;

X2 := wb;

wf 3 : if (Permit 6= true){
wf 4 : if (C = 0){
wf 5 : if (X1 = WriterProc ∧X2 = wb){ \ ∗ if (CAS(X , [i , wb], [true, wSafeID]))

X1 := true;

X2 := wSafeID ;

wSafeID := wb;

wf 6 : if (Permit = wb){ \ ∗ CAS(Permit , wb, true)

Permit := true;

};

1

};
};
};
};
};

w6 : while(Permit 6= true){
either{goto w6; }
or{

\ ∗WRITER ABORT SEQUENCE

wa1 : Permit := true;

wa2 : wa := X1;

wb := X2;

wa3 : if (wa 6= true){
if (X1 = wa ∧X2 = wb){ \ ∗ CAS(X , [wa, wb], [nPID , wb])

X1 := nPID ;

X2 := wb;

};
wa4 : if (X1 6= true){
wa5 : D := prevD ;

goto w ncs;

};
};

wa6 : goto w7;

};
};

w cs : skip;

w7 : Gate := currD ;

}
}

\ ∗

\ ∗ READ − LOCK CODE

process(readerprocess ∈ ReaderProc)

variables rSafeID = self , d , ra, rb; {
r ncs : while(true){
r1 : C := C + 1; \ ∗ atomic F &A

r2 : d := D ;

r3 : ra := X1; \ ∗ atomic read on X1 and X2

rb := X2;

r4 : if (ra ∈ ({WriterProc} ∪ ReaderProc)){
if (X1 = ra ∧X2 = rb){ \ ∗ CAS(X , [ra, rb], [i , rb])

X1 := self ;

X2 := rb;

};
};

r5 : if (X1 = true){
r6 : while(Gate 6= d){

either{goto ra1; }or{goto r6; }; \ ∗ abort or wait

}

2

};
r cs : skip;

r7 : C := C − 1; \ ∗ F &A(C , − 1)

goto rf 1;

\ ∗ READ −ABORT SEQUENCE

ra1 : C := C − 1; \ ∗ F &A(C , − 1)

\ ∗ Promote(i).Not a procedure so we can reason without the stack

rf 1 : ra := X1;

rb := X2;

if (ra 6= true){
rf 2 : if (X1 = ra ∧X2 = rb){ \ ∗ CAS(X , [ra, rb], [i , rb])

X1 := self ;

X2 := rb;

rf 3 : if (Permit 6= true){
rf 4 : if (C = 0){
rf 5 : if (X1 = self ∧X2 = rb){ \ ∗ if (CAS(X , [i , rb], [true, rSafeID]))

X1 := true;

X2 := rSafeID ;

rSafeID := rb;

rf 6 : if (Permit = rb){ \ ∗ CAS(Permit , rb, true)

Permit := true;

};
};
};
};
};
};
}
}
}

BEGIN TRANSLATION

constant defaultInitValue
variables D , Gate, X 1, X 2, Permit , C , pc, wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb

vars
∆
= 〈D , Gate, X 1, X 2, Permit , C , pc, wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

ProcSet
∆
= {WriterProc} ∪ (ReaderProc)

Init
∆
= Global variables

∧D = false
∧Gate = false
∧X 1 = true
∧X 2 = nPID
∧ Permit = true
∧ C = 0
Process writerprocess

3

∧ wSafeID = WriterProc
∧ wa = defaultInitValue
∧ wb = defaultInitValue
∧ prevD = defaultInitValue
∧ currD = defaultInitValue
Process readerprocess

∧ rSafeID = [self ∈ ReaderProc 7→ self]
∧ d = [self ∈ ReaderProc 7→ defaultInitValue]
∧ ra = [self ∈ ReaderProc 7→ defaultInitValue]
∧ rb = [self ∈ ReaderProc 7→ defaultInitValue]
∧ pc = [self ∈ ProcSet 7→ case self = WriterProc → “w ncs”

2self ∈ ReaderProc → “r ncs”]

w ncs
∆
= ∧ pc[WriterProc] = “w ncs”
∧ pc′ = [pc except ! [WriterProc] = “w1”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

w1
∆
= ∧ pc[WriterProc] = “w1”
∧ wb′ = X 2
∧ pc′ = [pc except ! [WriterProc] = “w2”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, prevD , currD ,

rSafeID , d , ra, rb〉

w2
∆
= ∧ pc[WriterProc] = “w2”
∧X 1′ = WriterProc
∧X 2′ = wb
∧ pc′ = [pc except ! [WriterProc] = “w3”]
∧ unchanged 〈D , Gate, Permit , C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

w3
∆
= ∧ pc[WriterProc] = “w3”
∧ prevD ′ = D
∧ currD ′ = (¬prevD ′)
∧ pc′ = [pc except ! [WriterProc] = “w4”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, rSafeID , d ,

ra, rb〉

w4
∆
= ∧ pc[WriterProc] = “w4”
∧D ′ = currD
∧ pc′ = [pc except ! [WriterProc] = “w5”]
∧ unchanged 〈Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

w5
∆
= ∧ pc[WriterProc] = “w5”
∧ Permit ′ = wb
∧ pc′ = [pc except ! [WriterProc] = “wf1”]

4

∧ unchanged 〈D , Gate, X 1, X 2, C , wSafeID , wa, wb, prevD , currD ,
rSafeID , d , ra, rb〉

wf 1
∆
= ∧ pc[WriterProc] = “wf1”
∧ wa ′ = X 1
∧ wb′ = X 2
∧ if wa ′ 6= true

then ∧ pc′ = [pc except ! [WriterProc] = “wf2”]
else ∧ pc′ = [pc except ! [WriterProc] = “w6”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , prevD , currD ,
rSafeID , d , ra, rb〉

wf 2
∆
= ∧ pc[WriterProc] = “wf2”
∧ if X 1 = wa ∧X 2 = wb

then ∧X 1′ = WriterProc
∧X 2′ = wb
∧ pc′ = [pc except ! [WriterProc] = “wf3”]

else ∧ pc′ = [pc except ! [WriterProc] = “w6”]
∧ unchanged 〈X 1, X 2〉

∧ unchanged 〈D , Gate, Permit , C , wSafeID , wa, wb, prevD , currD ,
rSafeID , d , ra, rb〉

wf 3
∆
= ∧ pc[WriterProc] = “wf3”
∧ if Permit 6= true

then ∧ pc′ = [pc except ! [WriterProc] = “wf4”]
else ∧ pc′ = [pc except ! [WriterProc] = “w6”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,
currD , rSafeID , d , ra, rb〉

wf 4
∆
= ∧ pc[WriterProc] = “wf4”
∧ if C = 0

then ∧ pc′ = [pc except ! [WriterProc] = “wf5”]
else ∧ pc′ = [pc except ! [WriterProc] = “w6”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,
currD , rSafeID , d , ra, rb〉

wf 5
∆
= ∧ pc[WriterProc] = “wf5”
∧ if X 1 = WriterProc ∧X 2 = wb

then ∧X 1′ = true
∧X 2′ = wSafeID
∧ wSafeID ′ = wb
∧ pc′ = [pc except ! [WriterProc] = “wf6”]

else ∧ pc′ = [pc except ! [WriterProc] = “w6”]
∧ unchanged 〈X 1, X 2, wSafeID〉

∧ unchanged 〈D , Gate, Permit , C , wa, wb, prevD , currD , rSafeID , d ,
ra, rb〉

5

wf 6
∆
= ∧ pc[WriterProc] = “wf6”
∧ if Permit = wb

then ∧ Permit ′ = true
else ∧ true

∧ unchanged Permit
∧ pc′ = [pc except ! [WriterProc] = “w6”]
∧ unchanged 〈D , Gate, X 1, X 2, C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

w6
∆
= ∧ pc[WriterProc] = “w6”
∧ if Permit 6= true

then ∧ ∨ ∧ pc′ = [pc except ! [WriterProc] = “w6”]
∨ ∧ pc′ = [pc except ! [WriterProc] = “wa1”]

else ∧ pc′ = [pc except ! [WriterProc] = “w cs”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

wa1
∆
= ∧ pc[WriterProc] = “wa1”
∧ Permit ′ = true
∧ pc′ = [pc except ! [WriterProc] = “wa2”]
∧ unchanged 〈D , Gate, X 1, X 2, C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

wa2
∆
= ∧ pc[WriterProc] = “wa2”
∧ wa ′ = X 1
∧ wb′ = X 2
∧ pc′ = [pc except ! [WriterProc] = “wa3”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , prevD , currD ,

rSafeID , d , ra, rb〉

wa3
∆
= ∧ pc[WriterProc] = “wa3”
∧ if wa 6= true

then ∧ if X 1 = wa ∧X 2 = wb
then ∧X 1′ = nPID

∧X 2′ = wb
else ∧ true

∧ unchanged 〈X 1, X 2〉
∧ pc′ = [pc except ! [WriterProc] = “wa4”]

else ∧ pc′ = [pc except ! [WriterProc] = “wa6”]
∧ unchanged 〈X 1, X 2〉

∧ unchanged 〈D , Gate, Permit , C , wSafeID , wa, wb, prevD , currD ,
rSafeID , d , ra, rb〉

wa4
∆
= ∧ pc[WriterProc] = “wa4”
∧ if X 1 6= true

then ∧ pc′ = [pc except ! [WriterProc] = “wa5”]

6

else ∧ pc′ = [pc except ! [WriterProc] = “wa6”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

wa5
∆
= ∧ pc[WriterProc] = “wa5”
∧D ′ = prevD
∧ pc′ = [pc except ! [WriterProc] = “w ncs”]
∧ unchanged 〈Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

wa6
∆
= ∧ pc[WriterProc] = “wa6”
∧ pc′ = [pc except ! [WriterProc] = “w7”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

w cs
∆
= ∧ pc[WriterProc] = “w cs”
∧ true
∧ pc′ = [pc except ! [WriterProc] = “w7”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

w7
∆
= ∧ pc[WriterProc] = “w7”
∧Gate ′ = currD
∧ pc′ = [pc except ! [WriterProc] = “w ncs”]
∧ unchanged 〈D , X 1, X 2, Permit , C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

writerprocess
∆
= w ncs ∨ w1 ∨ w2 ∨ w3 ∨ w4 ∨ w5 ∨ wf 1 ∨ wf 2 ∨ wf 3

∨ wf 4 ∨ wf 5 ∨ wf 6 ∨ w6 ∨ wa1 ∨ wa2 ∨ wa3 ∨ wa4
∨ wa5 ∨ wa6 ∨ w cs ∨ w7

r ncs(self)
∆
= ∧ pc[self] = “r ncs”
∧ pc′ = [pc except ! [self] = “r1”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb,

prevD , currD , rSafeID , d , ra, rb〉

r1(self)
∆
= ∧ pc[self] = “r1”
∧ C ′ = C + 1
∧ pc′ = [pc except ! [self] = “r2”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

r2(self)
∆
= ∧ pc[self] = “r2”
∧ d ′ = [d except ! [self] = D]
∧ pc′ = [pc except ! [self] = “r3”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , ra, rb〉

7

r3(self)
∆
= ∧ pc[self] = “r3”
∧ ra ′ = [ra except ! [self] = X 1]
∧ rb′ = [rb except ! [self] = X 2]
∧ pc′ = [pc except ! [self] = “r4”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d〉

r4(self)
∆
= ∧ pc[self] = “r4”
∧ if ra[self] ∈ ({WriterProc} ∪ ReaderProc)

then ∧ if X 1 = ra[self] ∧X 2 = rb[self]
then ∧X 1′ = self

∧X 2′ = rb[self]
else ∧ true

∧ unchanged 〈X 1, X 2〉
else ∧ true

∧ unchanged 〈X 1, X 2〉
∧ pc′ = [pc except ! [self] = “r5”]
∧ unchanged 〈D , Gate, Permit , C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

r5(self)
∆
= ∧ pc[self] = “r5”
∧ if X 1 = true

then ∧ pc′ = [pc except ! [self] = “r6”]
else ∧ pc′ = [pc except ! [self] = “r cs”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,
currD , rSafeID , d , ra, rb〉

r6(self)
∆
= ∧ pc[self] = “r6”
∧ if Gate 6= d [self]

then ∧ ∨ ∧ pc′ = [pc except ! [self] = “ra1”]
∨ ∧ pc′ = [pc except ! [self] = “r6”]

else ∧ pc′ = [pc except ! [self] = “r cs”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

r cs(self)
∆
= ∧ pc[self] = “r cs”
∧ true
∧ pc′ = [pc except ! [self] = “r7”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb,

prevD , currD , rSafeID , d , ra, rb〉

r7(self)
∆
= ∧ pc[self] = “r7”
∧ C ′ = C − 1
∧ pc′ = [pc except ! [self] = “rf1”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

8

ra1(self)
∆
= ∧ pc[self] = “ra1”
∧ C ′ = C − 1
∧ pc′ = [pc except ! [self] = “rf1”]
∧ unchanged 〈D , Gate, X 1, X 2, Permit , wSafeID , wa, wb, prevD ,

currD , rSafeID , d , ra, rb〉

rf 1(self)
∆
= ∧ pc[self] = “rf1”
∧ ra ′ = [ra except ! [self] = X 1]
∧ rb′ = [rb except ! [self] = X 2]
∧ if ra ′[self] 6= true

then ∧ pc′ = [pc except ! [self] = “rf2”]
else ∧ pc′ = [pc except ! [self] = “r ncs”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb,
prevD , currD , rSafeID , d〉

rf 2(self)
∆
= ∧ pc[self] = “rf2”
∧ if X 1 = ra[self] ∧X 2 = rb[self]

then ∧X 1′ = self
∧X 2′ = rb[self]
∧ pc′ = [pc except ! [self] = “rf3”]

else ∧ pc′ = [pc except ! [self] = “r ncs”]
∧ unchanged 〈X 1, X 2〉

∧ unchanged 〈D , Gate, Permit , C , wSafeID , wa, wb, prevD , currD ,
rSafeID , d , ra, rb〉

rf 3(self)
∆
= ∧ pc[self] = “rf3”
∧ if Permit 6= true

then ∧ pc′ = [pc except ! [self] = “rf4”]
else ∧ pc′ = [pc except ! [self] = “r ncs”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb,
prevD , currD , rSafeID , d , ra, rb〉

rf 4(self)
∆
= ∧ pc[self] = “rf4”
∧ if C = 0

then ∧ pc′ = [pc except ! [self] = “rf5”]
else ∧ pc′ = [pc except ! [self] = “r ncs”]

∧ unchanged 〈D , Gate, X 1, X 2, Permit , C , wSafeID , wa, wb,
prevD , currD , rSafeID , d , ra, rb〉

rf 5(self)
∆
= ∧ pc[self] = “rf5”
∧ if X 1 = self ∧X 2 = rb[self]

then ∧X 1′ = true
∧X 2′ = rSafeID [self]
∧ rSafeID ′ = [rSafeID except ! [self] = rb[self]]
∧ pc′ = [pc except ! [self] = “rf6”]

else ∧ pc′ = [pc except ! [self] = “r ncs”]

9

∧ unchanged 〈X 1, X 2, rSafeID〉
∧ unchanged 〈D , Gate, Permit , C , wSafeID , wa, wb, prevD , currD ,

d , ra, rb〉

rf 6(self)
∆
= ∧ pc[self] = “rf6”
∧ if Permit = rb[self]

then ∧ Permit ′ = true
else ∧ true

∧ unchanged Permit
∧ pc′ = [pc except ! [self] = “r ncs”]
∧ unchanged 〈D , Gate, X 1, X 2, C , wSafeID , wa, wb, prevD , currD ,

rSafeID , d , ra, rb〉

readerprocess(self)
∆
= r ncs(self) ∨ r1(self) ∨ r2(self) ∨ r3(self)

∨ r4(self) ∨ r5(self) ∨ r6(self) ∨ r cs(self)
∨ r7(self) ∨ ra1(self) ∨ rf 1(self) ∨ rf 2(self)
∨ rf 3(self) ∨ rf 4(self) ∨ rf 5(self) ∨ rf 6(self)

Next
∆
= writerprocess

∨ (∃ self ∈ ReaderProc : readerprocess(self))

Spec
∆
= Init ∧2[Next]vars

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

END TRANSLATION

List of Invariants:

TypeOK
∆
= ∧D ∈ {true, false}
∧Gate ∈ {true, false}
∧X 1 ∈ (ProcSet ∪ {true, nPID})
∧X 2 ∈ (ProcSet ∪ ReaderProc ∪ {nPID})
∧ Permit ∈ (ProcSet ∪ {true, nPID})
∧ C ∈ Nat
∧ wSafeID ∈ (ProcSet ∪ {nPID})
∧ ∀ i ∈ ReaderProc : rSafeID [i] ∈ (ProcSet ∪ {nPID})
∧WriterProc ∈ Nat \ {true, nPID}
∧ ReaderProc ⊆ Nat \ {true, nPID}
∧ {WriterProc} ∩ ReaderProc = {}

I Global
∆
= ∧ C = Cardinality({i ∈ ReaderProc : pc[i] ∈

{“r2”, “r3”, “r4”, “r5”, “r6”, “r7”, “ra1”, “r cs”}})
∧ Cardinality({X 2} ∪ {wSafeID}

∪ {rSafeID [i] : i ∈ ReaderProc}) = Cardinality(ProcSet) + 1

I w1w2
∆
= pc[WriterProc] ∈ {“w ncs”, “w1”, “w2”} ⇒

∧Gate = D

10

∧ Permit = true
∧ (X 1 = true)⇒ ({} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] 6= Gate})
∧ (X 1 6= true)⇒ ({} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate})
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf4”, “rf5”}

∧X 1 = j}

I w3w4
∆
= pc[WriterProc] ∈ {“w3”, “w4”} ⇒

∧Gate = D
∧ Permit = true
∧X 1 ∈ ProcSet
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf4”, “rf5”}

∧X 1 = j}

I w5
∆
= pc[WriterProc] = “w5”⇒

∧ Gate = ¬D
∧ Permit = true
∧ X 1 ∈ ProcSet
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf4”, “rf5”}

∧X 1 = j}

I f 1
∆
= pc[WriterProc] ∈ {“wf1”} ⇒

∧ Gate = ¬D
∧ Permit ∈ {true, nPID} ∪ ProcSet
∧ X 1 ∈ ProcSet ∪ {true}
∧ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf5”}

∧X 1 = j} ⇒
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r6”, “r7”}}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”}

∧ d [j] = Gate}
∧ X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ Permit = wb

∧ X 1 = true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ Permit 6= true ⇒

1 = Cardinality({j ∈ ReaderProc : ∧ pc[j] = “rf6”
∧ rb[j] = Permit})

∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

11

I f 2
∆
= pc[WriterProc] ∈ {“wf2”} ⇒

∧ Gate = ¬D
∧ Permit ∈ {true, nPID} ∪ ProcSet
∧ X 1 ∈ ProcSet ∪ {true}
∧ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf5”}

∧X 1 = j} ⇒
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r6”, “r7”}}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”}

∧ d [j] = Gate}
∧ X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ Permit = wb
∧ X 1 6= wa ⇒ ∨ {} 6= {j ∈ ReaderProc :

pc[j] ∈ {“r2”, “r3”, “r4”, “r5”, “r6”, “r cs”, “r7”, “ra1”, “rf1”}}
∪
{j ∈ ReaderProc : ∧ pc[j] = “rf2”

∧X 1 = ra[j]}
∨ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf3”, “rf4”, “rf5”}

∧X 1 = j}
∧ X 1 = true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ Permit 6= true ⇒

1 = Cardinality({j ∈ ReaderProc : ∧ pc[j] = “rf6”
∧ rb[j] = Permit})

∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I f 3f 4
∆
= pc[WriterProc] ∈ {“wf3”, “wf4”} ⇒

∧Gate = ¬D
∧ Permit ∈ {true, nPID} ∪ ProcSet
∧X 1 ∈ ProcSet ∪ {true}
∧ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf5”}

∧X 1 = j} ⇒
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r6”, “r7”}}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”}

∧ d [j] = Gate}
∧X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ Permit = wb
∧ X 1 6= WriterProc ⇒ (∨ {} 6= {j ∈ ReaderProc :

pc[j] ∈ {“r2”, “r3”, “r4”, “r5”, “r6”, “r cs”, “r7”, “ra1”, “rf1”}}
∪
{j ∈ ReaderProc : ∧ pc[j] = “rf2”

12

∧X 1 = ra[j]}
∨ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf3”, “rf4”, “rf5”}

∧X 1 = j})
∧X 1 = true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ Permit 6= true ⇒

1 = Cardinality({j ∈ ReaderProc : ∧ pc[j] = “rf6”
∧ rb[j] = Permit})

∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I f 5
∆
= pc[WriterProc] = “wf5”⇒

∧ Gate = ¬D
∧ Permit ∈ {true, nPID} ∪ ProcSet
∧ X 1 ∈ ProcSet ∪ {true}
∧ X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : pc[j] = “r6”}
∧ Permit = wb
∧ X 1 6= WriterProc ⇒ (
∨ {} 6= {j ∈ ReaderProc : pc[j] ∈ {“r2”, “r3”, “r4”, “r5”, “r6”, “r cs”, “r7”, “ra1”, “rf1”}}

∪
{j ∈ ReaderProc : ∧ pc[j] = “rf2”

∧ ra[j] = X 1}
∨ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf3”, “rf4”, “rf5”}

∧ j = X 1})
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ X 1 = true ⇒
∧ Permit 6= true ⇒

1 = Cardinality({j ∈ ReaderProc : ∧ pc[j] = “rf6”
∧ rb[j] = Permit})

∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I f 6
∆
= pc[WriterProc] = “wf6”⇒

∧ Gate = ¬D
∧ Permit = wb
∧ X 1 = true
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “rf6”

∧ rb[j] = Permit}
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I w6wa1
∆
= pc[WriterProc] ∈ {“w6”, “wa1”} ⇒

∧Gate = ¬D
∧ Permit ∈ {true, nPID} ∪ ProcSet

13

∧X 1 ∈ ProcSet ∪ {true}
∧ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf5”}

∧X 1 = j} ⇒
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r6”, “r7”}}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”}

∧ d [j] = Gate}
∧X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ Permit = wb
∧ ∨ {} 6= {j ∈ ReaderProc : pc[j] ∈ {“r2”, “r3”, “r4”, “r5”, “r6”, “r cs”, “r7”, “ra1”, “rf1”}}

∪
{j ∈ ReaderProc : ∧ pc[j] = “rf2”

∧ ra[j] = X 1}
∨ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf3”, “rf4”, “rf5”}

∧ j = X 1}
∧X 1 = true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ Permit 6= true ⇒

1 = Cardinality({j ∈ ReaderProc : ∧ pc[j] = “rf6”
∧ rb[j] = Permit})

∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I w7wa6
∆
= pc[WriterProc] ∈ {“w7”, “wa6”} ⇒

∧Gate = ¬D
∧ Permit = true
∧X 1 = true
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I wa2
∆
= pc[WriterProc] ∈ {“wa2”} ⇒

∧Gate = ¬D
∧ Permit = true
∧X 1 ∈ ProcSet ∪ {true}
∧ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf5”}

∧X 1 = j} ⇒
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r6”, “r7”}}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”}

∧ d [j] = Gate}
∧X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧X 1 = true ⇒

14

∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}
∧ d [j] = Gate}

∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I wa3
∆
= pc[WriterProc] ∈ {“wa3”} ⇒

∧Gate = ¬D
∧ Permit = true
∧X 1 ∈ ProcSet ∪ {true}
∧ {} 6= {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf5”}

∧X 1 = j} ⇒
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r6”, “r7”}}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”}

∧ d [j] = Gate}
∧X 1 ∈ ProcSet ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧ X 1 6= wa ⇒ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“f4”, “f5”}

∧X 1 = j}
∧X 1 = true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I wa4
∆
= pc[WriterProc] ∈ {“wa4”} ⇒

∧Gate = ¬D
∧ Permit = true
∧X 1 ∈ ProcSet ∪ {true, nPID}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf4”, “rf5”}

∧X 1 = j}
∧X 1 6= true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}
∧X 1 = true ⇒
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“r3”, “r4”, “r5”, “r6”}

∧ d [j] = Gate}
∧ {} = {j ∈ ReaderProc : pc[j] ∈ {“r7”}}

I wa5
∆
= pc[WriterProc] ∈ {“wa5”} ⇒

∧Gate = ¬D
∧ Permit = true
∧X 1 6= true
∧ {} = {j ∈ ReaderProc : ∧ pc[j] ∈ {“rf4”, “rf5”}

∧X 1 = j}
∧ {} = {j ∈ ReaderProc : ∧ pc[j] = “r6”

∧ d [j] 6= Gate}

15

InvAll
∆
= ∧ TypeOK
∧ I Global
∧ I w1w2
∧ I w3w4
∧ I w5
∧ I f 1
∧ I f 2
∧ I f 3f 4
∧ I f 5
∧ I f 6
∧ I w6wa1
∧ I w7wa6
∧ I wa2
∧ I wa3
∧ I wa4
∧ I wa5

\ * Modification History

\ * Last modified Wed May 25 12:59:22 EDT 2011 by NancyZheng

\ * Last modified Tue May 10 13:46:19 EDT 2011 by Nancy

\ * Created Sun Feb 27 22:17:05 EST 2011 by Nancy

16

	Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm
	Recommended Citation

	1 Introduction
	2 Background and Definitions
	2.1 Mutual Exclusion
	2.2 Reader-Writer Problem
	2.3 Reader Priority
	2.4 Abortability of Reader-Writer Algorithms
	2.5 Specification of the Abortable Reader-Priority Reader-Writer Algorithm
	2.6 Explanation of RMR (Remote Memory References) complexity

	3 Hardware Support
	3.1 Registers
	3.2 Fetch and Add (F&A)
	3.3 Compare and Swap (CAS)
	3.4 Cache Invalidation Models in Cache-Coherent Systems

	4 Previous Work
	4.1 Constant RMR Reader-Priority Multi-Reader Single-Writer Algorithm
	4.2 Abortable Mutual Exclusion Algorithm

	5 Abortable Reader-Priority Single-Writer Multi-Reader Algorithm
	5.1 Description of the Variables and Their Purpose
	5.2 Reader's Protocol: Line-by-Line Commentary
	5.3 Writer's Protocol: Line-by-Line Commentary
	5.4 Promote Procedure: Line-by-Line Commentary

	6 Model Checking
	6.1 PlusCal
	6.2 TLA+
	6.3 TLC

	7 Proof of Algorithm
	7.1 Notation
	7.2 Invariants
	7.3 Proof of Invariants
	7.4 Proof of Properties

	8 Worst-case O(1)-RMR in Conservative Cache Model
	9 Generalization to Multi-Reader Multi-Writer Algorithm
	10 Conclusion
	11 Acknowledgments
	References
	A Appendix
	A.1 Algorithm and Invariants Specified in PlusCal and TLA+

