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ABSTRACT

As online business has been very popular in the past decade, the tasks of 
providing user authentication and verification have become more important than 
before to protect user sensitive information from malicious hands. The most 
common approach to user authentication and verification is the use of password. 
However, the dilemma users facing in traditional passwords becomes more and 
more evident: users tend to choose easy-to-remember passwords, which are 
often weak passwords that are easy to crack. Meanwhile, behavioral biometrics 
have promising potentials in meeting both security and usability demands, since 
they authenticate users by "who you are", instead of "what you have". In this 
dissertation, we first develop two such user verification applications based on 
behavioral biometrics: the first one is via mouse movements, and the second via 
tapping behaviors on smartphones: then we focus on modeling user web 
browsing behaviors by Fitts' Law.

Specifically, we develop a user verification system by exploiting the uniqueness 
of people's mouse movements. The key feature of our system lies in using much 
more fine-grained (point-by-point) angle-based metrics of mouse movements for 
user verification. These new metrics are relatively unique from person to person 
and independent of the computing platform. We conduct a series of experiments 
to show that the proposed system can verify a user in an accurate and timely 
manner, and induced system overhead is minor. Similar to mouse movements, 
the tapping behaviors of smartphone users on touchscreen also vary from 
person to person. We propose a non-intrusive user verification mechanism to 
substantiate whether an authenticating user is the true owner of the smartphone 
or an impostor who happens to know the passcode. The effectiveness of the 
proposed approach is validated through real experiments. To further understand 
user pointing behaviors, we attempt to stress-test Fitts' law in the "wild", namely, 
under natural web browsing environments, instead of restricted laboratory 
settings in previous studies. Our analysis shows that, while the averaged 
pointing times follow Fitts' law very well, there is considerable deviations from 
Fitts' law. We observe that, in natural browsing, a fast movement has a different 
error model from the other two movements. Therefore, a complete profiling on 
user pointing performance should be done in more details, for example, 
constructing different error models for slow and fast movements. As future 
works, we plan to exploit multiple-finger tappings for smartphone user 
verification, and evaluate user privacy issues in Amazon wish list.
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1 Introduction

User security, implied by its name, refers to security that is both usable and trust­

worthy to end-users. Traditionally, security experts are primarily concerned with 

security, i.e., preventing malicious parties from damaging or peeking the user sen­

sitive information. However, as the weakest link in the security chain, end-users 

tend to favor usability over security in using security-related applications. It is up 

to end-users, who are not so tech-sawy, to decide whether to install/uninstall a 

security-related software and the choice of passwords or passcodes. More often, 

there is a discrepancy between traditional security goals and end-user interests. 

Taking access control as an example, security experts are more concerned with 

blocking malicious hackers; while end-users concern more on easy to remem­

ber/use and not locking themselves out.

Researchers have recently come to an agreement that, in making a security 

system usable, one needs to put usability first in the design cycle. In fact, CRA 

(Computing Research Association) lists one of the grand challenges as to “give 

end-users security controls they can understand and privacy they can control 

for the dynamic, pervasive computing environments of the future” [27]. In this 

dissertation, we present our efforts in designing two user verification systems, 

with the goal of enhancing user security, and in exploring Fitts’ law—one of the 

fundamental law in HCI (Human-Computer Interaction)—to model user behaviors 

of web browsing. For our future work, we plan to explore two directions: using 

multi-finger tappings for increased security in smartphone user verification, and
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evaluating privacy risks in publicly accessible Amazon wish list.

1.1 Mouse Dynamics

In today’s Internet-centered world, the tasks of user authentication and verifica­

tion have become more important than ever before [3,21,76,88]. For highly sen­

sitive systems such as online banking, it is crucial to secure users’ accounts and 

protect their assets from malicious hands. Even in less critical systems such as 

desktop machines in a computing laboratory, online forums, or social networks, 

a hijacked session can still be misused to spread viruses or post spam, possibly 

damaging a user’s reputation and other systems. The most common approach 

to securing access to systems is the use of a password [23,41]. Unfortunately, 

passwords suffer from two serious problems: password cracking and password 

theft [90,115]. Once a password is compromised, an adversary can easily abuse 

a victim’s account. Thus, there is a great demand to quickly and accurately verify 

that the person controlling a given user’s account is who the user claims to be, 

termed re-authentication [88].

Existing user verification and re-authentication methods require human in­

volvement, such as providing secret answers to agreed-upon questions. Unfor­

tunately, they only provide one-time verification, and the verified users are still 

vulnerable to both session hijacking and the divulging of the secret information. 

To achieve a timely response to an account breach, more frequent user verifica­

tion is needed. However, frequent verification must be passive and transparent 

to users, as continually requiring a user’s involvement for re-authentication is too 

obtrusive and inconvenient to be acceptable.

In the first project, we propose a biometric-based approach to verifying users 

based on passively observable mouse movement behaviors. In general, in order 

for a re-authentication system to be practical, it must have the following features:
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•  Accuracy. Not only must the system accurately identify an impostor, it must 

also have the probability of rejecting a true user close to zero, to avoid 

inconvenience to true users.

• Quick response. The system should make a quick verification decision. In 

other words, it should be able to distinguish a user in a timely manner.

• Difficult to forge. Even if a user’s profile template is known by an impostor, 

it will be very hard to mimic the normal biometric behaviors in a consistent 

manner and then evade the verification system.

Our new approach meets all of these challenges, delivering an accurate and 

quick verification based on biometrics which are difficult to forge. The basic work­

ing mechanism of our approach is to passively monitor the mouse movements 

of a user, extract angle-based metrics, and then use Support Vector Machines 

(SVMs) for accurate user verification. The key feature of our approach is to ex­

ploit the point-by-point angle-based metrics of mouse movements, which are rel­

atively unique from person to person and independent of the computing platform, 

for user verification.

Current biometric approaches are limited in applicability: physiological biomet­

rics, such as fingerprints and retinal scans, provide accurate one-time authentica­

tion but require specialized hardware which may be expensive or unavailable on 

all users’ machines. On the other hand, behavioral biometrics such as keystroke 

and mouse dynamics hold promise, because they can be obtained from com­

mon user interface (Ul) devices that nearly every user can be assumed to own. 

Compared with keystroke dynamics [64,77,84], mouse dynamics has its own ad­

vantage for two reasons. First, keystroke monitoring can record sensitive user 

credentials like usernames and passwords, raising much more serious privacy 

concerns than mouse movement monitoring. Second, keyboard is much more 

complex than mouse in structure, and thus keystroke dynamics are more easily
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affected by different kinds of keyboards in terms of shape, size, and layout.

However, to date the existing mouse-based user verification approaches have 

either resulted in unacceptably low accuracy or have required an unacceptably 

long amount of time to reach a decision, making them unsuitable for online re­

authentication. In contrast to previous research, our approach introduces a novel 

way—point-by-point angle-based metrics—to characterize users’ mouse move­

ments, which significantly reduces verification time while keeping high accuracy.

We perform a measurement-based study, derived from 30 controllable users 

and a corpus of more than 1,000 real users in the field. Based on these two sets 

of mouse movement data, we evaluate the effectiveness of the proposed system 

through a series of experiments, using the set of angle-based metrics specifically 

chosen for being both platform-independent and widely variant from user to user.

In summary, the major contributions of this work include:

• We model behavioral biometrics using mouse dynamics, and develop an 

efficient user verification system. It achieves high accuracy and significantly 

outperforms existing systems in terms of verification time.

• We propose a novel measurement strategy involving a carefully chosen set 

of angle-based metrics, which is relatively independent of the operating en­

vironment and capable of uniquely identifying individual users.

• We conduct an experiment involving sessions from over 1,000 unique users, 

which is able to re-authenticate a user within just a few clicks with a high 

accuracy. This promising result could lead to a practical user verification 

system, suitable for online deployment in the future.
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1.2 Smartphone User Verification via Tapping Be­

haviors

Smartphones have become ubiquitous computing platforms allowing users any­

time access to the Internet and many online services. On one hand, as a per­

sonal device, a smartphone contains important private information, such as text 

messages, always-logged-in emails, and contact list. On the other hand, as a 

portable device, a smartphone is much easier to get lost or stolen than conven­

tional computing platforms. Therefore, to prevent the private information stored 

in smartphones from falling into the hands of adversaries, user authentication 

mechanisms have been integrated into mobile OSes like Android and iOS.

Due to having a much smaller screen and keyboard on a smartphone than 

the traditional user input/output devices, PIN-based and pattern-based passcode 

systems have been widely used in smartphones for user authentication. However, 

many people tend to choose weak passcodes for ease of memorization. A 2011 

survey on iPhone 4-digit passcode reveals that the ten most popular passcodes 

represent 15% of all 204,508 passcodes and the top three are 1234, 0000, and 

2580 [5]. Moreover, recent studies show that an attacker can detect the location 

of screen taps on smartphones based on accelerometer and gyroscope readings 

and then derive the letters or numbers on the screen [14,75,82,109]. An attacker 

could even exploit the oily residues left on the screen of a smartphone to derive 

the passcode [7]. Therefore, it is highly desirable to enhance the smartphone’s 

user authentication with a non-intrusive user verification mechanism, which is 

user-transparent and is able to further verify if the successfully logged-in user is 

the true owner of a smartphone.

In the second project, we explore the feasibility of utilizing user tapping be­

haviors for user verification in a passcode-enabled smartphone. The rationale
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behind our work is that individual human users have their own unique behavioral 

patterns while tapping on the touch screen of a smartphone. In other words, you 

are how you touch on the screen, just like you are how you walk on the street. 

The rich variety of sensors equipped with a smartphone including accelerometer, 

gyroscope, and touch screen sensors, make it possible to accurately character­

ize an individual user’s tapping behaviors in a fine-grained fashion. With over 80 

smartphone users participated in our study, we quantify the user tapping behav­

iors in four different aspects: acceleration, pressure, size, and time. Based on 

the behavioral metrics extracted from these four features, we apply the one-class 

learning technique for building an accurate classifier, which is the core of our user 

verification system.

We evaluate the effectiveness of our system through a series of experiments 

using the empirical data of both 4-digit and 8-digit PINs. In terms of accuracy, 

our approach is able to classify the legitimate user and impostors with averaged 

equal error rates of down to 3.65% for 4-digit PINs. For 8-digit PINs, we achieve 

even lower equal error rates of down to 3.21%. Overall, our verification system 

can significantly enhance the security of a smartphone by accurately identify­

ing impostors. Especially for practical use, our tapping-behavior-based approach 

is user-transparent and the usability of traditional passcodes on a smartphone 

remains intact. As our approach is non-intrusive and does not need additional 

hardware support from smartphones, it can be seamlessly integrated with the 

existing passcode-based authentication systems.

1.3 Exploring Fitts’ Law in Web Browsing

Web browsing is mainly driven by target acquisition -  the movement of a pointing 

device, such as a mouse, touchpad, and stylus, to an on-screen target. The ability 

to quantify the way these pointing actions are performed has been studied heavily
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before. The previous research works have helped us better understand the effect 

human motor control has on pointing actions, with applications ranging from the 

design of more efficient graphical user interfaces (GUIs) [12], to the creation of 

accurate pointing devices [42], and human biometrics security [88,116].

Fitts’ law [39] is a classic and well-studied law, which quantifies pointing ac­

tions in terms of the size, distance, and time to reach the target. The most com­

mon formulation of Fitts’ law comes from [70] and is referred to as the “Shannon 

formulation”:

In Eq. 1.1, the log term is known as the index of difficulty {ID). Fitts’ law describes 

a linear relationship between the mean time to complete the pointing action (MT) 

and the index of difficulty {ID)  of the pointing task, which includes the distance to 

the target {A) and the width of the target in the direction of movement {W). The 

parameters a and b are environment- and user-specific.

This law has been one of the most widely used and most well-respected for­

mulas in human-computer interaction, but it represents an idealized view of point­

ing actions. Nearly all of the experimental results currently in the literature re­

garding Fitts’ law have been performed in extremely clinical settings -  on a blank 

background, a single target square or circle appears, and a user must move the 

cursor from a starting position to the target as quickly as possible. This style of 

pointing, however, is not typical of real-world GUI applications. Typically, there 

are many potential targets on the screen at once. The environment is full of dis­

tractions, instead of a blank white screen, and the user spends time considering 

his or her next move, instead of pointing as quickly as possible. All of these envi­

ronmental factors might affect the amount of time it takes for a user to complete a 

pointing action. There is very little research detailing how well Fitts’ law applies, 

if at all, in such scenarios.

Moreover, Fitts’ law is not merely a single equation in a vacuum. The law de-

( 1 .1)
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scribes a linear model of human pointing actions, and a model cannot be defined 

by its mean alone. Other side metrics such as the standard deviation or variance 

of the model should also be considered when discussing Fitts’ law, but the major­

ity of the current literature seems to focus exclusively on the mean as presented 

by the common formulation.

This work attempts to answer the question: how well does Fitts’ law truly 

model real human pointing tasks in web browsing? We examine Fitts’ law in a 

natural web browsing environment to determine its validity outside of a structured 

experimental setting. This is accomplished through a data set collected from 

1,047 users’ natural mouse traces on a real-world website. The major contribu­

tions of this work are summarized as follows:

•  an application of the Fitts’ law formula to pointing actions in a natural web 

browsing environment, involving a large-scale data collection from 1,047 

real-world users on an Internet forum (Section 4.2.1), to assess Fitts’ law’s 

applicability to typical GUIs outside of an experimental setting (Section 4.3.1);

• an observation that in web browsing, fast movements have a different error 

model from slow movements, which deviates from previous laboratory stud­

ies. We speculate that this is partially due to the open-loop nature of fast 

movements (Section 4.3.2);

•  a comparison of Fitts’ law results for natural browsing using two different 

pointing devices -  physical mouse and laptop touchpad -  to determine 

whether the choice of pointing device has an effect on the linear relationship 

described by Fitts’ law (Section 4.3.3);

•  an analysis of the standard deviation of Fitts’ law calculations of mean point­

ing time, to better understand the variance present in the Fitts model (Sec­

tion 4.3.4).
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1.4 Future Works

We leave two open topics for our future work. First, we are going to extend the 

user verification on smartphones to multiple-finger tappings, which promisingly 

provides higher level of robustness and security. Second, we plan to investigate 

various privacy issues from publicly accessible Amazon wish lists. The detailed 

research plans are described in Chapter 5.

1.5 Organization

The remainder of this dissertation is structured as follows. Chapter 2 presents 

our first work in developing an efficient user verification system via mouse move­

ments, including the detailed data collection, measurement and evaluation pro­

cess. Chapter 3 presents our second work in verifying smartphone users via their 

tapping behaviors, where a series of experiments are conducted to validate its ef­

ficacy in reality. Chapter 4 describes our third project in exploring Fitts’ law in web 

browsing, which is for further understanding people’s behaviors when interacting 

with computers. Chapter 5 concludes and proposes our future research plans 

on exploring multi-finger tappings for smartphone user verification and privacy 

issues in Amazon wish list.
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2 An Efficient User Verification Sys 

tem via Mouse Movements

In this chapter, we present our work on verifying users via their mouse move­

ments, which outperforms previous works in terms of both efficiency and accu­

racy. The chapter is structured as follows. Section 2.1 reviews the background 

and related work in the area of mouse dynamics. Section 2.2 describes our data 

collection and measurement, including our choice of angle-based metrics over 

more traditional metrics. Section 2.3 details the proposed classifier for user ver­

ification. Section 2.4 presents our experimental design and results. Section 2.5 

discusses issues which arise from the details of our approach, and Section 2.6 

concludes.

2.1 Background and Related Work

The underlying principle of biometric-based user authentication is centered on 

“who you are”. This is very different from conventional user authentication ap­

proaches, which are mainly based on either “what you have" or “what you know”. 

Unfortunately, a physical object such as a key or an ID card can be lost or stolen. 

Similarly, a memorized password could be forgotten or divulged to malicious 

users. Conversely, a biometric-based approach relies on inherent and unique 

characteristics of a human user being authenticated. The biometrics can never
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be lost or forgotten, nor can another user easily steal or acquire them. This makes 

biometrics very attractive for user authentication.

Biometrics are categorized as either physiological or behavioral [110]. Physio­

logical biometrics, like fingerprint and facial recognition, have attracted consider­

able attention in research [49,72]. The downside of these biometrics is that they 

need specialized hardware, which can be problematic for wide deployment. For 

user authentication over the Internet, one cannot always rely on the existence 

of hardware at the client side. In contrast, behavioral biometrics using human- 

computer interaction (HCI) can record data from common input devices, such as 

keyboards and mice, providing user authentication in an accessible and conve­

nient manner.

Behavioral biometrics first gained popularity with keystroke dynamics with 

Monrose et al.’s work on password hardening in 1999 [76]. Later on, Ahmed 

and Traore [2] proposed an approach combining keystroke dynamics with mouse 

dynamics. Mouse dynamics for re-authentication have been previously studied as 

a standalone biometric by Pusara and Brodley [88]. Unfortunately, their study is 

inconclusive with only eleven users involved, prompting the authors to conclude 

that mouse biometrics are insufficient for user re-authentication. Our study re­

lies on an improved verification methodology and far more users, leading us to 

reverse their hypothesis.

In Ahmed et al.’s work [2,3,78], while achieving very high accuracy, the number 

of mouse actions needed to verify a user’s identity1 is too high to be practical. 

Specifically, their experiment requires as many as 2,000 aggregate mouse actions 

before a user can be recognized, and is not practical for real-time deployment. 

Conversely, we aim to provide a system suitable for online re-authentication. We 

first employ a finer-grained data collection methodology, allowing us to collect far 

more data in less time. We also employ support vector machines (SVMs), which

1 referred to as session length in [3,78].
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are considerably faster than the neural networks employed in [3,78]. Thus, our 

system can make a decision in just several mouse clicks.

More recently, a survey covering the existing works in mouse dynamics has 

been conducted with a comparative experiment [58]. It points out that mouse dy­

namics research should be more aware to reduce verification time and take the 

effect of environmental variables into account. It can be seen later that, com­

pared to other works, our approach also achieves high accuracy but only requires 

a small amount of biometric data. Moreover, we explore the effects of environ­

mental factors (different machines, mice, and time) and show that our approach 

is relatively robust across different operating environments and times.

Graphical passwords [21,100] are a related form of user authentication, re­

lying on HCI through a pointing device to authenticate a user. Mouse dynamics 

differ in that they differentiate between users by how the users move and click the 

mouse, rather than where the users click. Graphical passwords record where the 

user clicks on the screen, and subsequently use this sequence as a substitute 

password. Systems such as these are complementary to our work, and can be 

deployed together. For instance, one might employ a graphical password sys­

tem while passively recording a user’s mouse dynamics, utilizing the passively 

recorded measurements as a secondary failsafe to verify the user’s identity. This 

is similar in spirit to using keystroke dynamics with password hardening as in [76].

2.2 Measurement and Characterization

2.2.1 Data Collection

We collect two sets of data. The first data set is from a controllable environment, 

referred to as the controllable set; while the second data set is from an online 

forum in the field, referred to as the field set. We have obtained approval from the 

Institutional Review Board (IRB) of our university, which ensures the appropriate

12



and ethical use of human input data in our work.

For the controllable set, 30 users are invited personally to participate in the 

data collection. They are from different ages, educational backgrounds, and oc­

cupations. We intentionally set a normal environment for these users and inform 

them to behave as naturally as possible. Mouse movement data are recorded 

during their routine computing activities. These activities range among word pro­

cessing, surfing the Internet, programming, online chatting, and playing games. 

We make use of a logging tool RUI [67] to record their mouse movement activities.

For the field set, more than 1,000 unique forum users’ mouse movements 

are recorded by JavaScript code, and submitted passively via AJAX requests 

to the web server. On one hand, these users are anonymous but identifiable 

through unique login names. However, there is no guarantee on the amount of 

data collected for a certain user. A forum user could be logged in for a long time 

with frequent mouse activities, or could perform just one click and then leave. On 

the other hand, the breadth of this corpus of users is utilized to serve as the base 

profile for both training and testing purposes.

The raw mouse movements are represented as tuples of timestamp and Carte­

sian coordinate pairs. Each tuple is in the form of (a c t i o n -t y p e , t,x,y), where 

a c t i o n -t y p e  is the mouse action type (a mouse-move or mouse-click), t is the 

timestamp of the mouse action, x is the x-coordinate, and y is the y-coordinate. 

Timestamps in our data collection are collected in milliseconds.

Data Processing

The purpose of preprocessing is to identify every point-and-click action, which is 

defined as continuous mouse movements followed by a click. Continuous mouse 

movements are series of mouse movements with little or no pause between each 

adjacent step. Within the ith point-and-click action for a user c, we denote the j\h 

mouse move record as (m o u s e -m o v e ,ti,Xi,yi)Ctj, where u is the timestamp of

13



Figure 2.1: Illustration of angle-based metrics.

the ith mouse movement. Based on the record that belongs to each point-and- 

click action, we calculate angle-based metrics.

Metrics

To analyze the mouse movement data, we define three fine-grained angle-based 

metrics: direction, angle of curvature, and curvature distance. These newly- 

defined metrics are different from the conventional metrics, such as speed and 

acceleration, and can accurately characterize a user’s unique mouse moving be­

haviors, independent of its running platform.

• Direction. For any two consecutive recorded points B and C, we record the 

direction traveled along the line B(5 from the first point to the second. The 

direction is defined as the angle between that line B(5 and the horizontal 

(see angle x in Figure 2.1).

• Angle of Curvature. For any three consecutive recorded points A, B, and C, 

the angle of curvature is angle Z.ABC\ i.e., the angle between the line from 

A to B (A§) and the line from B to C (B&) (see angle y in Figure 2.1).

• Curvature Distance. For any three recorded points A, B, and C, consider 

the length of the line connecting A to C (A&). The curvature distance is the 

ratio between the perpendicular distance from point B to the line ~A& (see 

the perpendicular lines in Figure 2.1) and the length of A&. Note that this 

metric is unitless because it is the ratio of two distances.
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As a comparison, we list the definition of two traditional mouse movement 

metrics, speed and pause-and-click, as follows.

• Speed. For each point-and-click action, we calculate the speed as the ratio 

of the total distance traveled for that action divided by the total time taken to 

complete the action.

•  Pause-and-Click. For each point-and-click action, we measure the amount 

of time between the end of the movement and the click event. In other 

words, this metric measures the amount of time spent pausing between 

pointing to an object and actually clicking on it.

2.2.2 Mouse Movement Characterization 

Dependence on Different Platforms

One problem we came across in analyzing our data is that it may be difficult or 

meaningless to compare two users who are using very different machines. The 

entire user’s environment can affect its data: the OS used, screen size and reso­

lution, font size, mouse pointer sensitivity, brand of mouse, and even the amount 

of space available on the desk near the mousepad. Metrics such as speed and 

acceleration, then, are poor choices for comparison between users of arbitrary 

platforms. This is because these two metrics can be skewed by differences in 

screen resolution and pointer sensitivity. On the other hand, metrics such as 

pause-and-click are highly dependent on the content a user is reading. For ex­

ample, a user tends to pause longer before clicking a link on a rich content page 

such as a wiki article, and hesitates for a much shorter time before clicking a 

“submit” button.

This makes a good case to use angle-based metrics for arbitrary user com­

parison instead. Direction and angle of curvature are not based on screen size 

or any other element of the user’s environment, and thus are relatively platform-
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Figure 2.2: Direction Angle metric plotted for two different users on two different machines each.
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Figure 2.3: Angle of Curvature metric plotted for two different users on two different machines each.

independent. Likewise, curvature distance is a ratio of distances on the screen, 

and thus self-adjusts for the user’s specific environment. A ratio can be compared 

to another user’s ratio across platforms.

Figures 2.2, 2.3, and 2.4 show the comparison of two users with angle-based 

metrics. We can see that the cumulative distribution function (CDF) curves for the 

same user’s individual data are very similar and well synchronized in shape, even 

across platforms. This indicates that angle-based metrics are relatively stable on 

different platforms.

Uniqueness of Angle-Based Metrics Across Users

The other distinctive feature of angle-based metrics is that they are unique across 

users. Not only does the same user have very similar angle-based results on
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Figure 2.4: Curvature Distance metric plotted for two different users on two different machines each.

different platforms, but different users have clearly different angle-based results, 

even on similar platforms.

Again, as Figures 2.2,2.3, and 2.4 show, even though each user’s CDF is con­

sistent across different platforms, there is a distinct gap between different users’ 

CDF curves, even on the same platform. As a comparison, Figure 2.5 shows the 

CDF curves with respect to the speed of the two users, a more commonly-used 

metric. Figure 2.6 shows the CDF curves with respect to the pause-and-click of 

the two users. While the different users' CDF curves in both speed and pause- 

and-click are closely coupled on the same environment, there is a distinct gap 

between the same user’s two curves for different environments. Since the closest 

matching curve for either user is the curve of the other user under the same envi­

ronment, it can be very hard to uniquely differentiate people using these metrics.

Together with the platform independence discussed above, this makes angle- 

based metrics superior to speed and pause-and-click for user verification. Note 

that for easy presentation, we only compare the difference of the mouse dynamics 

between a pair of users. However, the similar observation holds for the other 

users.
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Figure 2.5: Speed metric plotted for two different users under two different environments each.
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Figure 2.6: Pause-and-click metric plotted for two different users under two different environments each.

Distance Between Distributions

Using the distance between two probability distributions, we further verify if the 

angle-based features of a user remain relatively stable across different types 

of mice, platforms, and time, in comparison with those of the other controllable 

users.

We define the distance between two probability distributions as follows. Since 

angle-based features are continuous variables, we divide their whole range into 

discrete intervals, called bins, and calculate the probability density functions (PDFs) 

regarding to each bin. Consider two distributions: the first is expressed as PDF 

{p i ,P2 , . . . ,pn},  where p* represents the probability of falling into the ith bin; the 

second distribution is expressed similarly as PDF {qi,g2, ..., g„}. The distance be-
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Figure 2.7: Distances from one user's curvature angle distribution to those of others, as well as to itself in different 
settings.

tween the two distributions is the accumulated deviation from each other over all 

bins:

D( p , q )  =  \Pi~Qi \ -
i

Of course, the distance here is dependent on the size of each interval. The 

smaller we divide the interval, the more subtle differences the distance reflects. 

However, the bin should not be so small as to enlarge noise.

Figure 3.5 plots the distances of a user from the other users, as well as from 

itself using a different mouse on a different machine at very different time. Each 

user's PDF is computed over 1,000 curvature angles randomly selected from its 

data, and loops for 10 times. The height of each bar is the average distance from 

the target user (labeled as user 1) in setting A (indexed by 1-A in the figure), and 

each error bar is standard deviation over the 10 times. Data 1-A, 1-B, and 1-C 

are all from user 1. The details of these three settings are listed in Table 2.1. 

Moreover, data 1-B are recorded two and half months later than data 1-A, and 

data 1-C are recorded two days later than data 1-B.

It is clear that the distances from user 1 to itself using different mice, at dif­

ferent machines, and over different times are the two smallest in the figure, i.e., 

both are smaller than the distances from user 1 to any other users with the same 

setting. This implies that the angle-based behavior of a user has its own inherent
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Setting Machine Type Mouse Type

1-A Dell Precision T3500 Dell MOC5UO
Two-Button
Scroll-Wheel

1-B Apple Macbook MB990LL/A Apple A1152
One-Button
Trackball

1-C Apple Macbook MB990LL/A Dell MOC5UO
Two-Button
Scroll-Wheel

Table 2.1: Setting Details

pattern which is relatively stable across different settings and times; meanwhile, it 

is also distinguishable from the behaviors of other users. Note that in Figure 3.5, 

the distance values between user 1 -A and some users are very close to each 

other (e.g. the distance value of user 23 and that of user 27). However, it does 

not indicate that the behaviors of those users are similar, because the definition 

of distance here is an accumulation of deviations at different bins. The dynamics 

of two users’ PDFs could be totally different, but at the same time both deviate 

equally from a third user.

Note that to achieve accurate measurement results, there are two prerequi­

sites in characterizing mouse movement under different environments. First, the 

polling rates of mouse recorders at different platforms should be configured to the 

same level. Second, prior to characterizing a user’s mouse movement, sufficient 

mouse events must be collected to create a profile of the user’s mouse move­

ment. In particular, we observed that 1,000 mouse actions (which on average 

can be collected in 2 hours) are large enough to profile a user's mouse behavior 

well.

Number of Mouse Clicks in a Real Session

For the field set, drawn from 1,074 real users on an online forum over the course 

of an hour, we recorded an average of 15.14 clicks per user session. Note that 

because this data was gathered over a one-hour window, this value is a lower
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Figure 2.8: System Architecture

bound on the actual number of clicks in an average user session. Any user 

who was logged in before the window began or stayed logged in after the win­

dow ended (including users who stayed logged in longer than an hour) would 

necessarily have more clicks than recorded. Thus, the actual average is almost 

certainly higher, and probably much higher.

The number of mouse clicks per user session is closely related to verification 

time. With the average number of mouse clicks per session being about 15, a 

verification system based on mouse dynamics must be able to identify a user in 

fewer than 15 clicks in order to ensure that, on average, a decision is made within 

one user session. As shown in Section 2.4, our approach can verify a user’s 

identity with high accuracy in only 15 clicks, so our system can reliably make the 

right decision before the user logs off in a majority of cases.

2.3 System Architecture

As shown in Figure 2.8, our proposed user verification system consists of four 

components—recorder, preprocessor, classifier, and decision maker.

The design of the first two components is straightforward. The main task 

of the recorder is to record users’ mouse movements, while the preprocessor 

computes the angle-based metrics based on the recorded raw data. The focus of 

this section is on the design of the classifier and that of the decision maker.
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2.3.1 SVM Classifier

We choose Support Vector Machines (SVMs) as our classifier to differentiate 

users based on their mouse movement dynamics. SVMs have been success­

fully used in resolving real-life classification problems, including handwritten digit 

recognition [104], object recognition [83], text classification [57], and image re­

trieval [102]. In general, SVMs are able to achieve comparable or even higher 

accuracy with a simpler and thus faster scheme than neural networks.

In the two-class formulation, the basic idea of SVMs is to map feature vectors 

to a high dimensional space and compute a hyperplane, which separates the 

training vectors from different classes and further maximizes this separation by 

making the margin as large as possible. SVMs classify data by determining a

set of support vectors, which are members of the set of training inputs outlining a

hyper plane in feature space [105].

For a binary classification problem, given I training samples {x*, &}, i  =  1,. . . ,  I, 

each sample has d features, expressed as a d-dimensional vector x* (xi e Rd), 

and a class label yt with one of two values f a  e  { - l , l } ) .  A hyperplane in d- 

dimensional space can be expressed as w  • x  +  b =  0, where w  is a constant 

vector in d dimensions, and b is a scalar constant. We aim to find a hyperplane 

that not only separates the data points but also maximizes the separation. As Fig­

ure 2.9 shows, the distance between the dashed lines is called the margin. The 

vectors (points) that constrain the width of the margin are the support vectors. 

The formulation of our binary class SVM problem is to:

minimize: W (a) =  - a T 1 +  ]-aTHa,
m i

such that: aTy =  0, 0 < a < C l,

where matrix (H)^ =  ytyjfai • xj), a is the vector of I non-negative Lagrangian
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Figure 2.9: SVM hyperplane in two dimensional feature space [36].

multipliers to be determined, and C is a constant. This minimization problem 

is known as a Quadratic Programming Problem (QP), which is well studied with 

many proposed efficient algorithms.

In reality, not all data points can be linearly separated as we assumed. To 

handle this issue, SVMs use a “kernel trick”. The data are pre-processed in such 

a way that the problem is transformed into a higher dimension, where they are 

linearly separable in the new feature space. Given a mapping z =  <f>(x), and 

defining the kernel function as K(xatxh) =  </>(xa) • <j)(xb), our classifier would be

A popular choice of kernel function is the Gaussian Radial Basis Function (RBF) 

K(xa,xb) =  exp ( - 7  ||xa -  x6||2) , where 7  >  0 , and is a tunable parameter. In 

practice, RBF is a reasonable first choice among other kernels, due to its gener­

ality and computational efficiency [18].

Thus, the procedure to resolve a classification problem using SVMs is: (1) 

choosing a kernel function, (2) setting the penalty parameter C and kernel pa­

rameters as well, if any, (3) resolving the quadratic programming problem, and 

(4) constructing the discriminant function from the support vectors. In particular, 

we view the user verification problem as a two-class classification problem, and



the learning task is to build a classifier based on the user mouse movements.

In our proof-of-concept implementation, we used the open source SVM pack­

age LIBSVM 3.0 [18] for building the prototype. LIBSVM is an integrated tool 

for support vector classification. We used the default RBF kernel and the cross- 

validation to find the best parameter C and 7 . In our study, all impostors are 

classified as +1, and normal data are classified as -1. The detailed experiment 

setups will be discussed in Section 2.4.

2.3.2 Decision Making

In the design of the decision maker, we use two mechanisms, threshold and 

majority vote, to further improve verification accuracy.

Threshold

The threshold determines how SVMs’ output is interpreted: a value over the 

threshold indicates an impostor, while a value under the threshold indicates a 

true user. To make a user verification system deployable in practice, minimizing 

the probability of rejecting a true user is sometimes even more important than 

lowering the probability of accepting an impostor.

By default, in a binary classification problem with labels in {+1, -1 } , LIBSVM 

outputs a score called a decision value for each testing sample. If the decision 

value is greater than 0, the sample is classified as +1, otherwise it is classified as 

- 1.

Majority Votes

To build the profile for an authorized user, in training, we randomly pick m/2 sam­

ples that belong to the user, labeled as negative (non-impostor), and another 

random m/2 from the field set, labeled as positive (impostor). We employ a sim­

ple majority vote decision making scheme in order to improve and stabilize the
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verification accuracy. Specifically, before verifying if a sample belongs to the tar­

get user, we train the user’s profile 2n + 1 times. Each time the training samples 

are different since they are randomly selected. In this way, there will be 2n +1 

votes about the predicted label for each testing sample.The label that is voted by 

the majority, i.e., with greater than n votes, will be the final predicted label. With 

majority votes, the decision maker can significantly reduce the randomness of the 

results and improve verification accuracy.

2.4 Experimental Evaluation

In this section, we evaluate the effectiveness of our mouse movement based ver­

ification system through a series of experiments, in terms of verification accuracy, 

verification time, and system overhead. The verification accuracy of our system is 

measured using (1) the false reject rate (FRR), which is the probability that a user 

is wrongly identified as an impostor, and (2) the false accept rate (FAR), which is 

the probability that an impostor is incorrectly identified as a user. Here we define 

a block as follows:

Block (or detecting block) A block is composed of mouse movements in a group 

of point-and-click actions. Statistical features are calculated based on all 

mouse movements in one block.

Note that choosing different sizes (that is, choosing different number of point-and- 

click actions contained) of a block greatly affects verification accuracy, in terms of 

FAR and FRR.

The verification time is the mean time needed to detect an identity mismatch. 

This corresponds to the sum of the time for the user to generate mouse actions 

needed to make a decision, the time to extract the features for this session, and 

the time to classify the identity. In our approach, the number of mouse actions 

needed to make a decision equals to the number of clicks contained in one block.

25



As described before, a block corresponds to one sample in either training or test­

ing. Verification time is determined by the total number of actions needed to make 

decisions and the average time cost per action. In general, the larger the number 

of actions required for decisions and the higher the average time cost per action, 

the longer the verification time becomes.

2.4.1 Experimental Setup

As described in Section 2.2.1, our experiments are based on two sets of data. 

The first data set is collected in controllable environments. A total of 81,218 point- 

and-click actions are captured, with an average 5,801 point-and-click actions per 

user. Overall, 150 hours of raw mouse data are collected. The second data set is 

recorded from 1,074 anonymous users in an online forum for one hour.

These two data sets serve different purposes. A target user is selected from 

the first data set as the user to be verified, while forum users from the second data 

set are used as the background. Whereas we can identify a forum user based 

on its unique login name, the lack of guarantee on its collected data makes it 

unsuitable to be the verified target. The preprocessor extracts each user’s point- 

and-click actions and computes the angle-based metrics corresponding to each 

point-and-click. Each of those generated files containing point-and-click actions 

is divided into two halves. The training data will be extracted from the first half, 

while the testing data will be from the second half. Therefore, there is no overlap 

between the training data and the testing data.

2.4.2 Verification Results

We construct our classification model based on self and non-self discrimination. 

That is, for a given user, its profile is learned from a certain number of its own 

mouse movement samples and an equal number of others’ mouse movement 

samples. Therefore, the training data is composed of positive samples and an
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Figure 2.10: Variation of FRR and FAR with the number of clicks. Error bars indicate standard deviation.

equal number of negative samples. We train a separate model for each user in 

the controllable set. In the training file for a given user, a negative case is a block 

of point-and-click actions that belongs to itself, while a positive case is a block of 

clicks that belongs to others. Here, others' mouse movement blocks are randomly 

chosen from the forum set, due to its large user population.

There are four configurable parameters in our system: the size of a detecting 

block, the size of the training data, the threshold, and the number of votes. The 

first two are associated with the SVM training process. Increasing the threshold 

value directly lowers false reject rate (FRR), but at the cost of raising false ac­

cept rate (FAR). Increasing the number of votes improves verification accuracy in 

terms of both FRR and FAR, but increases the verification time.

To fully evaluate verification accuracy, we conduct two sets of experiments. In 

the first set of experiments, we test our classification model trained in the same 

environment. In the second set of experiments, we test the classification model 

trained in a different environment.

Self and Non-Self Discrimination in Same Environment

We first configure the number of mouse clicks per block and the size of the training 

data. The FRR and FAR with different sizes of detecting blocks and training data
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Figure 2.11: Variation of FRR and FAR with threshold.

are shown in Figures 2.10(a) and 2.10(b), respectively. These tests are performed 

with the default threshold of 0.5 and 5 out of 9 (5/9) majority votes. As larger 

detecting block size and training data are provided, the SVM classifier becomes 

more accurate, but we see diminishing returns in accuracy as the number of 

actions increases, e.g., going from 10 clicks to 25 clicks requires 150% more 

input but only provides a relatively small increase in verification accuracy; also 

going from 100 training samples to 300 training samples requires 200% more 

data, but only returns a relatively small increase in verification accuracy.

With the SVM classifier configured, the last two parameters, the threshold and 

the number of votes, determine the overall performance of the system.

The threshold can be increased or decreased from the default value of 0.0 to 

bias the classifier towards authentic users or impostors, lowering the FRR or FAR, 

respectively. As mentioned in Section 2.3.2, this is a tradeoff between user in­

convenience level and system security level. After multiple tests, we observe that 

setting the threshold value to 0.5 yields a false reject rate 1 % on average. There­

fore, throughout this chapter, we only show results with a threshold value of 0.5. 

Setting the threshold value affects both FRR and FAR. Figure 2.11 shows that 

increasing the threshold value greatly lowers FRR at different sizes of a detecting 

block.
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Figure 2.12: Variation of FRR and FAR with majority votes.

The use of majority votes increases the verification accuracy of the system, 

in terms of both FRR and FAR. Figure 2.12 shows the improvement of FRR by 

majority votes. However, increasing the number of votes means longer verifica­

tion time, since for n votes the classifier needs to be run n times. Figure 2.12 

indicates that the improvement by 2/3 majority votes is comparable to that of 3/5 

majority votes.

With a fully configured system (500 training blocks, a threshold of 0.5, and 

3/5 majority votes), Table 2.2 lists FRR and FAR averaged over 30 users in the 

controllable set. It can be seen that, if there are 25 clicks in one block, the average 

false reject rate is 0.86%, so there is only a little chance that an authenticated user 

is misclassified as an impostor. Meanwhile, we achieve an average false accept 

rate of 2.96%.

Number of Clicks FRR FAR
1 4.57% 18.79%
3 2.59% 10.81%
5 2.02% 7.67%
10 1.27% 5.23%
15 1.03% 3.13%
20 0.70% 3.32%
25 0.86% 2.96%

Table 2.2: Variation of FRR and FAR with Different Number of Clicks in One Block
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Figure 2.13: FRR and FAR for one user profiled on one platform and tested on another platform.

Self and Non-Self Discrimination in Different Environment

To verify that our approach also works in different environments with different 

machines, we conduct another self vs. non-self discrimination experiment on two 

different machines. More specifically, the user’s profile is trained from its mouse 

movements in a work environment on a desktop, while its mouse movements in a 

home environment on a laptop are tested. The testing user base includes 5 users. 

The corresponding FRR and FAR are shown in Figure 2.13, each represented by 

a single curve, respectively. Note that a user is profiled on one platform but tested 

on a different one, and hence a single plot shows the result of the test.

It can be seen that our approach works well across different environments and 

platforms. It further confirms that our classification model indeed captures those 

features that are intrinsic to a user and not affected by environmental factors.

Partial Movements

Partial movements are a series of continuous mouse movements without ending 

in a click. On one hand, unlike point-and-click actions that have a certain object to 

reach as a target, some partial movements could be aimless. For example, a user 

may move its mouse just to stop the screen saver when watching a video. Thus, 

we observe that the movements of point-and-clicks demonstrate a more consis­

tent pattern than those of partial movements. However, most partial movements 

are intentionally performed. For example, a user may often move its mouse to

30



aid reading. In addition, some partial movements are just as well-motivated as 

point-and-clicks. A user could start moving the mouse to a link, but then decide 

not to click on it.

Moreover, in a real user session, partial movements occur much more fre­

quently than point-and-clicks. From the forum data we collected, there are only 

0.53 mouse clicks per minute on average, but 6.58 partial mouse movements per 

minute. Figure 2.14 shows the comparison of ROC (Receiver Operating Charac­

teristic) curves with and without partial movements for a randomly selected user 

(other users’ ROC curves are similar).

Suppose we choose 20 mouse clicks in a detecting block. On one hand, 

without partial movements -  that is, when only point-and-clicks are included -  

the EER (equal error rate) is 1.3%; with partial movements, the EER increases 

to 1.9%. On the other hand, using partial movements can lower the average 

verification time by one order of magnitude (about 12 times) in our experiments. 

Therefore, using partial movements will significantly reduce verification time, but 

at the cost of accuracy degradation.

Subtleties on Verification Time

The verification time is the time required by a verification system to collect suf­

ficient behavioral data and then make a classification decision. The value of 

the verification time heavily depends on two factors: (1) the number of required 

mouse clicks (or mouse movements if partial movements are included) in a de­

tecting block, and (2) how frequently a user generates mouse actions. If the num­

ber of mouse actions in a detecting block is already configured, the verification 

time will be mainly determined by the latter.

There are two verification scenarios, static and continuous, when estimating 

the number of mouse actions a user generates per unit time. In the scenario of 

static verification, a user is required to perform a series of mouse movements
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Figure 2.14: ROC curves with and without partial movements.

and its mouse data is verified within a certain amount of time (e.g., login time). A 

good example of this scenario is a click-based graphical password for user login, 

where five clicks are estimated to be made in no more than 25 seconds [10,22]. 

This implies that the verification time will be less than 100 seconds if 20 mouse 

clicks are needed in a testing block. By contrast, in the scenario of continuous 

verification, a user’s mouse data is continuously collected and verified throughout 

the entire session. This is non-intrusive to users and meets the goal of passive 

monitoring. However, the frequency of user mouse actions varies significantly in 

different sessions. In general, the average frequency of user mouse actions will 

be much lower than that of the static scenario. The reason is that often there is a 

period of silence between a user’s previous and next mouse actions while a user 

is reading or typing. An observation from the forum data we collected indicates, 

on average, it takes 1.89 minutes for one mouse click to happen. If we choose 20 

mouse clicks in a detecting block, the verification time could be as long as 37.73 

minutes; however, the verification time will be reduced to 3.03 minutes if partial 

movements are used.

System Overhead

The verification system can be deployed in two different scenarios. In the first 

scenario, for example, it can be used for access control in a computer lab or on a 

personal computer. In this case, it will be installed at the client side by the system
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administrator. In this standalone scenario, normally only a single user is present 

for verification at any one time, and the end host has a plenty of resources to fulfill 

the verification tasks. Thus, the performance impact caused by the verification on 

the host is minor.

In the second scenario, for an online application such as banking account ver­

ification, the system will be placed at the server side, with JavaScript embedded 

inside users’ account home page. Deployed at the server side, our system needs 

to be able verify hundreds or even thousands of users simultaneously in real-time. 

Thus, system overhead becomes an issue, and the system must be efficient in 

terms of memory and CPU costs.

We first estimate the memory overhead of the verification process. We profile 

the verification process using the Linux tool valgrind, and find out that it only 

consumes 3.915 KBytes of memory per testing block during the operation. The 

primary memory cost is to accommodate the accumulated user-input actions and 

SVM outputs for each online user. A single user-input action consumes 12 bytes, 

4 bytes each for the 3 angle-based metrics. A detecting block of 10 user-input ac­

tions consumes 120 bytes, and this is the per-user memory requirement. If 120 

bytes is scaled to 1,000 online users, it is only 117.19KBytes in total, which is 

negligible considering that online websites currently store the user name, pass­

word, IP address, security questions and literally dozens of other attributes for 

each user.

The computational overhead is the sum of CPU costs in pre-processing and 

detecting (including classifying and decision making). The pre-processing on 15 

minutes’ user inputs from more than 1,000 users in a typical website, including 

5,270 point-and-click actions, takes only 20.937 seconds. The CPU cost is mea­

sured on a Pentium 4 Xeon 3.0Ghz, using the Linux command time. Note that the 

forum trace is collected during 15 minutes from about 1,000 online users, imply­

ing that it takes about 23.3 milliseconds to process data generated in one second.
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At the same time, the verification takes only 229 milliseconds over 5,801 point- 

and-click actions. In comparison to pre-processing, this is negligible. Therefore, 

the induced computational overhead is minor on the server.

In terms of disk space for storing user profiles, the signature of a single user 

profile generated by the training process consumes 203.32KBytes. If it is scaled 

to 100,000 users, that is 19.4GBytes, which is very affordable at a personal com­

puter, let alone a high end server.

2.4.3 Classification of Pointing Devices

In reality, it is common that a same user uses different kinds of pointing devices 

from time to time. For example, a laptop user may use the on-board touchpad 

for some time, but switch to a USB-connected mouse when a larger desk space 

is available. Therefore, it is desirable to detect the type of pointing device being 

used in a non-obtrusive way. In other words, the question we attempt to answer is, 

given a series of cursor movements, is it possible to tell if they are from a touchpad 

or a computer mouse? Intuitively, there exist some biomechanical differences be­

tween a touchpad and a mouse because their driven forces are different [32,85]. 

While a touchpad involves more finger movements, a mouse involves more wrist 

movements. In addition, when people use a mouse, they are more likely to move 

their whole arm. Fitts’ law analysis shows [70] that the index of performance for 

the touchpad is between 1.6 to 2.3, whereas the computer mouse has the values 

ranging from 2.6 to 10.4. Thus, generally it takes longer time to move the cursor 

with a touchpad than with a computer mouse. All these factors contribute to a 

detectable difference between the moving behavioral patterns using a touchpad 

and a mouse.

Here we introduce an additional angle-related metrics, moving orientation, in 

which a movement direction falls into one of the eight sections shown in Fig­

ure 2.15. We further define a set of new features by associating moving orien-
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Figure 2.15: The entire angle range 360° is divided into eight sections. The eight divisions of angle, each with a resolution 
of 45°, are labeled with numbers 1 to 8. For each section, the average values of metrics are calculated as features, in 
order to differentiate between mouse and touchpad data.

tation with speed and curvature angles. In particular, we average all the corre­

sponding metric values like speed per orientation section. As a result, for a given 

metric, there are eight average values with respect to the eight different moving 

orientations in total. These additional features are described as follows.

•  Normalized Step-wise Speed per Moving Orientation. In Figure 2.1, a step­

wise speed is calculated as the length of vector over the time difference 

between A and B. It is further normalized with the averaged step-wise 

speed over the whole continuous movement. Our purpose is to quantify the 

distribution of moving speed with respect to different moving orientations.

•  Averaged Curvature Angle per Moving Orientation. The choice of this fea­

ture is due to the underlying differences in using touchpad and mouse — 

they involve different bodily parts for movements: the former is mostly with 

finger, while the latter is with both wrist and finger. These two different 

moving mechanisms make their kinetic traits deviate from one orientation to 

another. For this very reason, exploring these angle-related dynamics suits 

our need in differentiating mouse and touchpad data.

•  Change of Adjacent Curvature Angles per Moving Orientation. The varia­

tion of curvature angle is closely related to angular acceleration. From phys-
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ical science, angular acceleration is proportional to moment of force (also 

known as torque, r  =  r  x F). And again, touchpad and mouse usages 

involve different bodily parts, which affects the magnitude and direction of 

forces exerted on the pointing devices, and in turn the angular acceleration 

is affected. Overall, this feature depicts one more aspect of differences in 

touchpad and mouse behaviors.

We differentiate movement behaviors between a traditional mouse and a touch­

pad by employing these new metrics and features, in addition to the three metrics 

introduced in Section 2.2.1. In accuracy evaluation, we collected a data set from 

21 users using either mouse or touchpad. Figure 2.16 plots the results of classi­

fication accuracy based on the above feature set. The curve shows the accuracy 

as the function of the number of mouse events per block. On average, there are 

about 10 mouse events in one mouse click action. Thus as shown in Figure 2.16, 

we can achieve more than 90% accuracy in differentiating mouse and touch­

pad after 400 events or about 40 point-and-clicks. Generally the more mouse 

events are available in calculation of features, the higher accuracy we achieve. 

Some small fluctuations present in the curve, and it is not always monotonically 

increasing with more mouse events per block. This is because we use statistics 

for computing the features. There exists random noise, and hence more mouse 

events does not always make it closer to the true distribution.

2.4.4 Classification within Controlled Dataset

In order to cross validate our approach, we conduct an additional set of experi­

ments only using the controlled dataset. Within the controlled dataset, half of the 

users act as the target users, and the other half serve as impostors only. We 

run one round of classification for each target user, where the rest of users in the 

controlled dataset (i.e., non-target-users) are treated as the background. With a 

block size of 20 point-and-clicks and the training size of 200 blocks, the average
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Figure 2.16: The classification accuracy in differentiating mouse and touchpad data, as a function of the increasing number 
of mouse events per block.

Source FRR FAR Data required Settings Notes

[3] 2.4649% 2.4614% 2000 mouse actions Continuous Free mouse movements

[78] 0% 0.36% 2000 mouse actions Continuous Free mouse movements

[45] 2% 2% 50 mouse strokes Static Mouse movements from a memory game

[88] 1.75% 0.43% Not specified Continuous Applies to a certain application

[93] 11.2% 11.2% 3600 mouse curves Continuous Free mouse movements

Ours 1.3% 1.3% 20 mouse clicks Continuous Free mouse movements

Table 2.3: Comparison with Existing Works

accuracy turns out to be 92.12%. The accuracy slightly declines in comparison 

to that with the field dataset. This is because the field dataset contains a much 

larger pool of mouse actions from non-target-users than the controlled dataset. 

As a result, with the field dataset, the impostor model learned by the classifier 

captures a richer profile of non-target-user behaviors. And in the context of two- 

class classification, the boundary between a target user and impostors in the 

feature space can be more accurately recognized, which yields higher accuracy 

when utilizing the field dataset rather than the controlled dataset.

2.4.5 Comparison with Existing Works

We compare our evaluation results with those of existing works in terms of verifi­

cation accuracy and time, which are listed in Table 2.3. As described in Section 

2.4.2, the verification time is highly dependent on the number of mouse events
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needed to make a decision, the type of mouse events used (mouse click, mouse 

move, or drag-and-drop), as well as how fast a user generates mouse events. 

Even for the same user at different times, the number of mouse events per unit 

time varies a lot. However, to the best of our knowledge, our work is the first to 

achieve high accuracy with a reasonably small number of mouse events.

2.5 Discussion

Since our verification system records users’ mouse movements and clicks, pri­

vacy concerns may arise. However, compared to keystroke dynamics, the amount 

of personal information included in mouse dynamics is minimal. In the process of 

recording keystrokes, the system would record the user’s passwords, user names, 

and other sensitive textual information. By contrast, recording mouse dynamics 

only reveals the physical movements of a mouse and its clicks within a certain 

period of time, giving away little to no information about user credentials. Even 

with the perfect knowledge of a user’s mouse movements, the only things an ad­

versary can figure out are when the user clicked and on which position of the 

screen. Thus, we believe that our verification system will not cause any privacy 

violations.

In general, mouse-dynamics-based re-authentication techniques are robust 

against online forgery. A person’s unique mouse dynamics are similar to its sig­

nature, and like a signature, it is difficult to mimic even with the complete knowl­

edge of the original. In fact, a user’s mouse dynamics is a continuous process, 

making it much harder to forge than a signature. Unlike forging a signature, which 

only has to be accomplished once, the adversary of our verification system would 

need to mimic the true user’s mouse patterns continuously for the entire length 

of the session. It is extremely difficult for one user to force itself to consistently 

move the mouse in such a mechanical way that it matches specific angles, even
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if those metrics are known ahead of time. Thus, mouse dynamics generally and 

our fine-grained angle-based approach in particular, are very robust against on­

line forgery. However, how vulnerable mouse-dynamics-based approaches are to 

offline attacks, especially generative attacks which create concatenative synthetic 

forgeries [8], is still an open question and will be investigated in our future work.

The retraining of our classifier is necessary to deal with sudden, perhaps 

temporary, changes in a user’s mouse profile. If the user’s behavior suddenly 

changes, due to an unexpected complication such as a sprained wrist, the differ­

ence in mouse usage could be large enough for the user to be unrecognizable 

by the verification system. The system would classify the user as an impos­

tor and prevent that user from accessing its own account. While these sorts of 

occurrences are relatively rare, to avoid the possible rejection, the user can eas­

ily appeal to a system administrator to retrain the classifier with the user’s new 

movement patterns. Once the user’s behavior returns to normal (for example, the 

user’s wrist heals), we can either retrain the system again, or simply reuse the 

previous classifier if a backup is available.

Although our approach is relatively independent of the running environments, 

it is sensitive to the polling rate of mouse movement recording. In the mouse 

data collection, a continuous mouse movement is discretized to a set of mouse 

coordinates, which are sampled at a certain rate. Thus, the measured resolution 

of mouse movements is dependent on the polling rate of a recorder. The faster 

the polling rate is, the more fine-grained movements we capture. For example, 

given a mouse movement curve, a high polling rate can render a smooth accurate 

shape, but a low polling rate more likely profiles it as a zigzag path. For this 

reason, in our data collection on different environments, the polling rates of the 

recorders are configured to the same value. In fact, it is not difficult to maintain 

a given polling rate under different running environments. Through I/O methods 

provided in most common programming languages, we are able to set timers and
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capture mouse cursor position at a fixed interval.

It is true that with an increase in user population, there is a higher chance that 

two users share the similar mouse movements. In fact, known as “the scalability 

problem”, this is a common problem for almost all biometrics approaches. In face 

recognition, if more people are tested, it is more likely that two users’ faces are 

similar and could make the classifier fail. The same thing happens in keystroke 

dynamics, and it has been determined that the accuracy of keystroke dynamics 

decreases with the increase in sample size [13,84].

Though promising, our accuracy is unable to reach the European Standard for 

Access Control Systems, which requires a false acceptance rate (FAR) of under 

0.001 % and a false rejection rate (FRR) of under 1 %. Therefore, we believe that 

our scheme is more suitable to work together with other authentication methods 

for user verification, instead of working as a stand-alone authentication system.

2.6 Conclusion

In this chapter, we present a new approach to user re-authentication using the 

behavioral biometrics provided by mouse dynamics. Our approach focuses on 

fine-grained angle-based metrics, which have two advantages over previously 

studied metrics. First, angle-based metrics can distinguish a user accurately 

with very few mouse clicks. Second, angle-based metrics are relatively inde­

pendent of the operating environment of a user, making them suitable for online 

re-authentication.

Our system mainly consists of a recorder, which gathers a user’s mouse dy­

namics, and a support vector machine (SVM) classifier, which seeks to verify a 

user as either an impostor or an authenticated party. We gathered two sets of 

data: one set of 30 users under controlled circumstances, and another set of 

over 1,000 users on a forum website. We evaluated the system performance in
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terms of verification accuracy and time, resulting in a equal error rate (EER) of 

1.3% with just 20 mouse clicks. We also showed that, for a system deployed at 

server side, the overhead required for online verification is negligible.
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3 User Verification on Smartphones 

via Tapping Behaviors

This chapter is on our second work in developing another behavior-based user 

verification system on smartphones. Exploiting a variety of on-board sensors 

(accelerometer, gyroscope, and touchscreen sensors) readily available on smart­

phones, we establish user-specific tapping patterns that can distinguish him/her 

from others. This chapter is structured as follows. Section 3.1 and 3.2 reviews 

the background and related work in the area of smartphone user authentication. 

Section 3.3 describes our data collection and measurement, including our choice 

of metrics. Section 3.4 details the proposed classifier for user verification. Sec­

tion 3.5 presents our experimental design and results. Section 3.6 discusses 

issues which arise from the details of our approach, and Section 3.7 concludes.

3.1 Background

The tapping behaviors of individual users on touchscreen vary from person to 

person due to differences in hand geometry and finger agility. Each user has 

a unique personal tapping pattern, reflected on the different rhythm, strength, 

and angle preferences of the applied force. As our tapping-behavior-based ap­

proach verifies the owner of a smartphone based on “who you are” -  your physical 

and behavioral traits, instead of “what you know”, it belongs to biometrics-based

42



user authentication. In general, a biometrics authentication system authenticates 

users either by their physiological traits like faces and voices [11,72] or behavioral 

patterns like finger typing and hand movements [77,116].

While physiological traits can achieve high accuracy in the process of user 

authentication, they have not been widely used in mobile devices. Recent stud­

ies have also shown that the physiology-based mechanisms deployed in mobile 

devices are sensitive to certain environmental factors, which could significantly 

diminish their accuracy and reliability. For example, face recognition may fail due 

to a different viewing angle and poor illumination [86], and voice recognition de­

grades due to background noise [11]. However, given the same mobile device, 

behavioral biometrics tend to be less sensitive to the surrounding environmental 

factors like darkness or noise.

Exploiting the behavioral information captured by multiple sensors on a smart­

phone, we can exclusively create a detailed user profile for verifying the owner of 

the smartphone. Since our approach works seamlessly with the existing passcode- 

based user authentication mechanisms in mobile devices, it plays a role of implicit 

authentication. In other words, our approach can act as a second factor authenti­

cation method and supplement the passcode systems for stronger authentication 

in a cost-effective and user-transparent manner. More recently, seminal works 

have been proposed to explore the feasibility of user verification employing the 

behaviors of pattern-based passwords [30]. However, the false reject rate (FRR) 

of their work is rather high, which means there is a high chance that the owner 

of a mobile device would be mistakenly regarded as an impostor and be blocked 

from accessing the device.
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3.2 Related Work

A) Keystroke Dynamics and Graphical Passwords.

Keystroke dynamics has been extensively studied in distinguishing users by the 

way they type their personal identification number (PIN) based passwords [65]. 

Research done on the analysis of keystroke dynamics for identifying users as they 

type on a mobile phone can be found in [9,25,26,60,79,112]. Clarke et al. [26] 

considered the dynamics of typing 4-digit PIN codes, in which the researchers 

achieve an average Equal Error Rate (ERR) of 8.5% on physical keyboard on a 

Nokia 5110 handset. Zahid etal. [112] examined this approach on touchscreen 

keyboards and achieve, in one best scenario, a low Equal Error Rate of approxi­

mately 2% with training set required a minimum of 250 keystrokes.

Researchers have also suggested the use of graphical passwords as an eas­

ier alternative to text-based passwords [19,56], based on the idea that people 

have a better ability to recall images than texts. A good overview of popular 

graphical password schemes has been reported in [10]. Chang etal. [19] pro­

posed a graphics-based password KDA system for touchscreen handheld mobile 

devices. The experiment results show that EER is 12.2% in the graphics-based 

password KDA proposed system, and EER is reduced to 6.9% when the pres­

sure feature is used in the proposed system. Different usability studies have 

outlined the advantages of graphical passwords, such as their reasonable login 

and creation times, acceptable error rates, good general perception and reduced 

interference compared to text passwords, but also their vulnerabilities [103].

B) Inferring Tapped Information from On-board Motion Sensors.

Several independent researches have found that simply by using data acquired 

by smartphone motion sensors, it is sufficient to infer which part of the screen 

users tap on [14,75,82,109]. The first effort was done by Cai et al. in 2011 [14].
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PIN Users Actions Average Actions Per User Filtered-Out
3-2-4-4 53 1,751 33 0.80%
1-1-1-1 41 2,577 63 2.64%
5-5-5-5 42 2,756 66 3.70%

1-2-5-9-7-3-8-4 27 1,939 72 7.37%
1-2-5-9-8-4-1-6 25 2,039 82 4.76%

Table 3.1: Collected Data

They utilized features from device orientation data on an HTC Evo 4G smart­

phone, and correctly inferred more than 70% of the keys typed on a number-only 

soft keyboard. Very soon, Xu et al. further exploited more sensor capabilities on 

smartphones, including accelerometer, gyroscope, and orientation sensors [109]. 

Evaluation shows higher accuracies of greater than 90% for inferring an 8-digit 

password within 3 trials. Miluzzo et al. demonstrated another key inference 

method on soft keyboard of both smartphones and tablets [75]. 90% or higher 

accuracy is shown in identifying English letters on smartphones, and 80% on 

tablets. Owusu et al. [82] infers taps of keys and areas arranged in a 60-region 

grid, solely based on accelerometer readings on smartphones. Result showed 

that they are able to extract 6-character passwords in as few as 4.5 trials.

C) User Authentication by Their Behavior on Touch Screens.

Research has been done in exploring different biometric approaches for provid­

ing an extra level of security for authenticating users into their mobile devices. 

Guerra-Casanova etal. [48] proposed a biometric technique based on the idea of 

authenticating a person on a mobile device by gesture recognition, and achieve 

Equal Error Rate (EER) between 2.01% and 4.82% on a 100-users base. Un­

obtrusive methods for authentication on mobile smart phones have emerged as 

an alternative to typed passwords, such as gait biometrics (achieving an EER 

of 20.1%) [31,80], or the unique movement users perform when answering or
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placing a phone call (EER being between 4.5% and 9.5%) [28].

Very recently De Luca et al. [30] introduced an implicit authentication ap­

proach that enhances password patterns on android phones, with an additional 

security layer, which is transparent to user. The application recorded all data 

available from the touchscreen: pressure (how hard the finger presses), size 

(area of the finger touching the screen), x and y coordinates, and time. Eval­

uation is based on 26 participants, with an average accuracy of 77%.

A latest work conducted by Sae-Bae et al. [91] makes use of multi-touch 

screen sensor on iPad (not phone) to capture the palm movement. They achieved 

a classification accuracy of over 90%. However, palm movements is not suitable 

for smartphone screens, since the screen is typically too small for palm move­

ments. Citty et al. [24] presented an alternative approach to inputting PINs on 

small touchscreen devices. It uses a sequence of 4 partitions of a selection of 

16 images, instead of 4-digits PINs, to increase the possible combination of au­

thentication sequences. However, inputting the sequence needs extra efforts in 

memorizing the images sequences. Kim et al. [66] introduced and evaluated 

a number of novel tabletop authentication schemes that exploit the features of 

multi-touch interaction.

3.3 Measurement and Characterization

Over 80 participants are involved in our data collection. Five different PINs are 

tested, in which three of them are 4-digit, and two are 8-digit. Here we choose 

PINs 3-2-4-4, 1-2-5-9-7-3-8-4, and 1-2-5-9-8-4-1-6 to represent these normal 

cases, but PINs 1-1-1-1 and 5-5-5-5 to represent the two extreme cases, one 

at the corner and the other at the center, respectively. Each participant is asked 

to enter an error-free PIN for at least 25 times and we collect a total of 11,062 

error-free actions. The user’s timing and motion data are recorded during the
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process. In this chapter, we refer to an action (or user input action) as the pro­

cess of tapping one PIN, instead of individual digits. The detailed information of 

the collected data is listed in Table 3.1.

(b) Two-Hand Typing(a) Application 
Layout

Figure 3.1: Screen layout of our data collection application, and the two-hand typing action.

The timing information is in resolution of milliseconds. Occasionally, some 

participants fail to make a smooth tapping intentionally or unintentionally. There­

fore, we employ a simple outlier removal process to all the collected raw data. 

An outlier tapping action is often signaled by a markedly longer-than-usual time 

interval, especially for a user who is very familiar with its own PIN. In our data set, 

a smooth PIN tapping action takes at most 600 milliseconds between subsequent 

keys for all participants. As a result, an inter-key time of greater than one second 

always signals such an outlier behavior. By this standard, a small amount of raw 

data is filtered out, as listed in the right-most column of Table 3.1.

All the data are collected on a Samsung Galaxy Nexus. Its fastest sampling 

rate on motion sensor readings is about 100Hz. Figure 3.1(a) shows the layout 

of our Android application for the data collection. In the experiments, all the par­

ticipants are asked to hold the phone with their left hands, and tap with their right 

hand index fingers, as shown in Figure 3.1(b).

We make use of the Android APIs to detect the touch event, including both 

key-press and key-release. Between each key-press and key-release, we record 

raw data of timestamps, acceleration, angular acceleration, touched-size, and
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# of Dimensions

Feature Set Description 4-digit 8-digit
Acceleration Acceleration at TouchDown 8 16
(linear & Acceleration at TouchUp 8 16
angular) Minimum during key-hold time 8 16

Maximum during key-hold time 8 16
Average during key-hold time 8 16

Pressure Pressure at TouchDown 4 8
Pressure at TouchUp 4 8

Size Touched Size at TouchDown 4 8
Touched size at TouchUp 4 8

Time Key hold time 4 8
Inter-key time 3 7

Total All features 63 127

Table 3.2: Features of Touchscreen Tapping Behaviors

pressure. Acceleration and angular acceleration are from API SensorEvent, while 

touched-size and pressure are from API MotionEvent.

3.3.1 Feature Extraction

Based on the raw data, we compute four sets of features for each PIN typing 

action: acceleration, pressure, size, and time. We describe each of them in the 

following:

• Acceleration: For each digit d in a PIN action, we calculate the five accel­

eration values:

-  Ady. the magnitude of acceleration when the digit d is pressed down;

-  Ady. the magnitude of acceleration when the digit d is released;

-  Ady, the maximum value of magnitude of acceleration during digit d 

key-press to key-release;

48



Target User e 
Impostors o 
Boundary ——■  5-------------

° ° o o
o 0 0 o o

°  ° o  ° o ° o  
o  °  ° o0 o o n  o  O '

° .  a  o °  oa°  o Q 
0 §  <P° o ° .  o

° ° 0  0 °0 0V ° 0 0 o 0 0 0
° 0 0° °o o°o - „  cto o" o ? n O? ° 0

O O

/X1

Figure 3.2: An illustration of two-feature space of a target user and many others. Xi and X3 are the two features. 
The dashed lines define the boundary of the target user’s behavior. Because the target user’s behavior is limited to a 
concentrated area, the boundary blocks the majority of potential impostors.

-  AdA: the minimum value of magnitude of acceleration during digit d 

key-press to key-release;

-  Ad$\ the average value of magnitude of acceleration during digit d key­

press to key-release.

All above values are the magnitude of acceleration ||a|| =  y/a2 +  a2 + a\.

We choose not to use individual components, because the phone coor­

dinate system is sensitive to location change. A similar procedure is ap­

plied to calculate the features from angular accelerations. Combining both 

acceleration- and angular-acceleration-related features, there are total of 40 

in a 4-digit PIN action and 80 in an 8-digit PIN action.

• Pressure: We obtain the pressure readings through Android API MotionEvent. getpressur 

The returned pressure measurements are of an abstract unit, ranging from

0 (no pressure at all) to 1 (normal pressure), however the values higher than

1 could occur depending on the calibration of the input device (according to 

Android API documents). In the feature set, we include pressure readings 

at both key-press and key-release. There are 8 pressure-related features 

for a 4-digit PIN, and 16 for an 8-digit PIN.
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Figure 3.3: Timing of tapping on the smartphone from three different users, shown in three vertical panels. Each user 
typed 20 times of the number string “3244”. The solid dots represent key-press time, and the open dots are key-release 
time. Different colors represent the timestamps of different digits.

• Size: Similar to pressure readings, another Android API call MotionEvent .getsizeO 

measures the touched size, associated with each touch event. According to 

Android document, it returns a scaled value of the approximate size for the

given pointer index. This represents the approximation of the screen area 

being pressed. The actual value in pixels corresponding to the touch is nor­

malized with the device’s specific range and is scaled to a value between 

0 and 1. For each key-press and key-release, we record the size readings 

and include in the feature set. A 4-digit PIN contains 8 size-related features, 

and an 8-digit PIN contains 16.

• Time: key-hold times and inter-key time intervals between two nearby keys.

They are measured from the TouchEvent timestamps, of both TouchUps and 

TouchDowns. Overall, a 4-digit PIN action contains 7 time-related features, 

while 8-digit PIN contains 15.

For a 4-digit PIN, each action results in a total of 63 features; for an 8-digit 

PIN, the number of features for one action is 127. Table 3.2 summarizes the 

description of the above four feature sets.
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3.3.2 Touchscreen Tapping Characterization

Our underlying assumption is that a user’s feature distribution should be clustered 

within a reliably small range compared with many others. As a result, those met­

rics can be exploited to block the majority of impostors, as illustrated in Figure 3.2.

Uniqueness of User Pattern

As described above, we define four sets of features in order to characterize a 

user’s tapping behaviors on smartphones: acceleration (both linear and angu­

lar), pressure, size, and time. All these features can be easily obtained from a 

smartphone’s on-board sensors, and can accurately characterize a user’s unique 

tapping behaviors. Based on the feature data, we observe that each user demon­

strates consistent and unique tapping behaviors, which can be utilized for differ­

entiating itself from other users.

Figure 3.3 shows the timestamps of entering the same PIN 3-2-4-4 from three 

different users, including the moments of each key-press and key-release. Each 

individual’s timing patterns clearly differ, but are very consistent within them­

selves. This is similar to the observations on a regular computer keyboard [73].

In addition to timing information, motion data such as pressure, touched size, 

and acceleration also reveal user-specific patterns. Generally speaking, acceler­

ation is proportional to the tapping force applied to the touchscreen, while angular 

acceleration represents the moment of force. Touched size is related to both user 

finger size and tapping force. Figure 3.4 shows the tapping pressure from three 

different users. We can see that three different users’ tapping pressure form dis­

tinguishable individual patterns, with Subject #1 taps the hardest, Subject #2 taps 

much more gently, and Subject #3 is gentlest. Meanwhile, the level of tapping 

pressure is relatively consistent within one subject.
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Subject#! (Trial #1) Subject *1 (Tria *2) Subject *1 (Trial #3)

Subject #2 (Trial #1) Subjact *2  (Tria *2) Sifcfect *2  (Trial #3)

Subjact #3 (Trial #1) Subjact t3  (Tria *2) SUbjact *3  (Tria *3)

Figure 3.4: Users' tapping pressure on smartphone touchscreen, while entering an 8-digit PIN 1-2-5-9-7-3-8-4. Each 
figure shows pressure readings on a 3x3 smartphone number pad. Darker color indicates a larger tapping pressure. 
Note that number "6" has no pressure because it is not in the PIN. Figures in the same row are from a same user while 
typing the PIN for three times.

Dissimilarity Measures

We represent each user action as n-dimensional feature vectors, where n is the 

number of feature dimensions. Using the dissimilarity score between two feature 

vectors, we further verify if our extracted features of a user remain relatively stable 

over multiple repetitions, in comparison with those of the other participants.

As the first step, we compute a target user’s template as an average feature 

vector over its N  PIN tapping actions, where N  =  150 in our case. At the same 

time, each feature’s standard deviation is computed based on these N  actions.

In our approach, given a new biometric data sample, we evaluate its dissim­

ilarity score from the target user’s template as follows. Suppose the new data 

sample’s feature vector is X  =  {Xx, X 2, ...,XU ...,X„}, where X t represents the 

ith feature dimension; and the target user’s template is represented similarly as
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Figure 3.5: Distribution of dissimilarity score of typing 3-2-4-4 from a target user's template, to both the target user Itself 
and other 52 users.
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Figure 3.6: Distribution of dissimilarity score of typing the 8-digit PIN 1 -2-5-9-7-3-8-4 from a target user's template, to both 
the target user itself and other users.

T  = { f u f 2, ...,Tn}. The dissimilarity score is the accumulated deviation from 

the two vectors over all normalized features:

D(X,  T ) = £
X , - T ,

(3.1)

where denotes the standard deviation of the tth feature over the N  trials in 

obtaining the target user’s template. By dividing oit we give higher weights to 

those features that have smaller variation within the target user, because they 

more reliably reflect the target user’s specific pattern. This is a standard proce­

dure mostly seen in outlier removal (also known as standard score or z-score in 

statistics [98]).

Figures 3.5, 3.6, and 3.7 show the distributions of dissimilarity scores, calcu­

lated from a target user’s template entering three different PINs, respectively, to
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Figure 3.7: Distribution of dissimilarity score of typing another 8-digit PIN 1-2-5-9-8-4-1 -6 from a target user's template, to 
both the target user itself and other users.

both the target user itself and the rest of other users. It is clear that in all three 

PINs, the dissimilarity scores to the target user itself is highly concentrated on the 

lower end, indicating a high similarity to its own behavioral template. Meanwhile, 

the dissimilarity scores of other users are dispersed and located on the higher 

end. For the 4-digit PIN 3-2-4-4 (Figure 3.5), there is a small overlap of the tar­

get user itself with others. It implies that only few members among the other 52 

users behave similarly to the target user, and may be misclassified. For the two 

8-digit PINs (Figures 3.6 and 3.7), the target user’s and others’ distribution curves 

are completely separated with a clear gap in between. Likely this is because an 

8-digit PIN action contains more cognitive information that is user-specific than a

4-digit PIN action.

3.4 Classification

The system architecture of our approach consists of a feature module, a classi­

fier module, and a decision maker module as shown in Figure 3.8. Firstly, raw 

data are recorded during user’s tapping actions. Then, four sets of features are 

calculated and fed into the classifier, which derives a decision score featuring its 

similarity to the target user’s template. The decision score is used by the deci­

sion maker to make a final decision, with respect to a predefined threshold value.
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Figure 3.8: System Architecture

The final decision is to label whether an user tapping action is originated from the 

target user or an impostor.

User behavioral pattern can be derived from either one-class or two-class 

learning. In this chapter, we study both of the classification schemes. In one- 

class learning, only the target user’s data is needed in training phase; but the 

learnt model can be applied to classify both the target user or an unknown impos­

tor. Additionally, if other users’ data are available, together with the target user’s 

own data, we can conduct a two-class learning. One-class learning is straightfor­

ward and more practical because it does not involve other users’ data, but with 

lower verification accuracy. For a two-class classifier, device manufacturers could 

pre-load some anonymized user data into smartphones before shipping them to 

their customers. With the pre-load anonymized user data, two-class classifica­

tion is also feasible to perform in practice and can achieve higher verification 

accuracy. In the following sections, we describe both one-class and two-class 

learning process of our approach in detail.

3.4.1 One-Class Learning

Our one-class learning process consists of the enrollment and testing phases. In 

enrollment of a target user /, taking its N  input actions, we calculate the standard 

deviations of every feature as Oj for the jth feature. In the testing phase, given 

an unknown sample as n-dimensional feature vector X Q, its distance from each
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of the N  feature vectors in the enrollment phase is calculated as:

d(XQ, X i) =  ' £ ^ S J z J M i j =  (3.2)
1 Gj

where X Qij is the jth feature of feature vector X Q, and X hJ is the jth feature of 

the ith feature vector in the enrollment phase. Following this, the distance of X Q's 

nearest neighbor dmin(XQ, I )  will be chosen as the dissimilarity measurement to 

the target user’s template. The underlying assumption is that if X Q belongs to the 

target user, it should have a short distance to its nearest neighbor in the target 

user’s data. And if dmin{XQ, I )  is below a pre-defined threshold value, it is labeled 

as from the target user; otherwise, it is labeled as from impostors. Implementation 

wise, setting a large threshold value means a higher probability of recognizing 

the target user, but allowing more impostors slip through. A small threshold value 

strictly blocks out impostors, but may falsely reject the target user.

3.4.2 Two-Class SVM for User Verification

Here we adapt user verification as a two-class problem: one class includes the 

behavioral features of the target user, and the other class denotes the features 

of other users. We choose support vector machines (SVM) as our two-class 

classifier, due to its good accuracy and efficiency in various applications including 

face recognition [87], text categorization [57], and image classification [81].

In our implementation, we utilize the open source SVM package LIBSVM 

3.12 [18] to perform all the two-class classifications. LIBSVM is an integrated tool 

for support vector machine learning. The default Radial Basis Function (RBF) 

kernel is used as the kernel function and cross-validation is applied to find the 

best parameters C and 7 .

In training, feature vectors from the target user are labeled as negative (-1), 

and those from others are labeled as positive (+1). In testing, given a feature
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vector from an unknown user, the SVM classifier outputs a decision score, which 

evaluates how probable the unknown features are from the target user. By default, 

LIBSVM will predict those with a negative decision score as negative cases, i.e., 

indeed from the target user; otherwise, positive decision scores lead to positive 

cases, and will be labeled as impostors.

Again, similar to one-class learning, a threshold value can be added to tune 

the classifier towards either the target user or impostors, based on the decision 

scores. Setting a positive threshold makes a strict classifier, i.e., very sensitive to 

anomalous behaviors; while setting a negative threshold will tolerate more on the 

target user’s behavioral changes, but less effective in blocking impostors. We will 

discuss the tradeoff of setting the threshold in the next section.

3.5 Experimental Evaluation

Generally, the accuracy of a biometrics-based authentication is evaluated by the 

following error rates:

•  False Reject Rate (FRR) — the probability that a user is wrongly identified 

as an impostor;

•  False Accept Rate (FAR) — the probability that an impostor is incorrectly 

identified as a legitimate user.

The point at which both FAR and FFR are equal is denoted as the Equal Error 

Rate (EER). The value of EER can be obtained by tuning a certain threshold until 

FAR and FAR are equal.

A formal description of a biometric-based verification system is summarized 

as [55]: given an unknown sample to be verified towards a target user I ,  its 

feature vector X Q is compared with the target user’s template X {. A dissimilarity 

score D(Xq, X[)  is calculated, where D  is a function that evaluates the dissimilar­

ity between two feature vectors. The dissimilarity function D  varies with different
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methods of classification. Finally, a threshold value t is set to determine if X Q is 

from the target user or an impostor:

target user, if D(X q , X j) < t 

impostor, otherwise

This structure applies to both one-class and two-class learning described in 

Section 3.4. The only difference is their dissimilarity functions D. Tuning the 

threshold would give the classifier a preference towards either the target user 

or the impostors, thus reducing one error rate while increasing the other. An 

illustration of the tradeoff between FRR and FAR, by tuning the threshold value is 

presented in Figure 3.9.

We can see in Figure 3.9 that as the threshold value is tuned along the X- 

axis, the outputs (shadow areas) favor either security or user convenience. For 

security-critical applications, one might want to have a guaranteed zero percent 

FAR. It means even at the cost of inconvenience to legitimate users, no impostor 

is able to get in. This kind of system should tune the threshold at the borderline 

of the minimum dissimilarity of the impostors’ data. On the other hand, for log­

ging into non-security-critical applications, or in a situation that security is less 

concerned such as at home, usability is more important than perfect impostor 

rejection. This kind of system should tune the threshold at the borderline of the 

maximum distance of the target user’s data. Because our approach acts as a 

second factor authentication, which supplements the passcode-based mecha­

nisms for higher assurance authentication in a cost-effective fashion, we focus 

more on being user-transparent and user-friendly while enhancing the security of 

PIN-based authentication.

In the following, we present the evaluation results of both one-class and two- 

class verification systems, along with the effect of threshold and number of ac-
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Figure 3.9: An illustration of tradeoff between FRR and FAR by tuning the threshold [55].

tions in training, the comparison with different combination of PINs, and the as­

sociated system overhead.

3.5.1 One-Class Verification Accuracy

There are two parameters that affect the accuracy in one-class learning: the 

number of actions in training, and the threshold.

By increasing the number of actions in training, user behavioral patterns be­

come more precise since more actions yield a higher statistical significance. Fig­

ure 3.10 shows that the averaged equal error rate (EER) decreases as more 

user actions are included in training. All five PIN combinations present similarly 

shaped curves, while the results of 1-1-1-1 and 5-5-5-5 are less accurate than 

those of 3-2-4-4 and the two 8-digit PINs. From lower accuracy of 1-1-1-1 and

5-5-5-5, it seems that a PIN number with higher repetition of digits reduces the 

difference in individual users’ tapping behaviors, leading to a less accurate verifi­

cation result. Moreover, for all five PINs, the accuracy remains on a similar level 

after 20 user actions. This implies, as more user actions are added in training, 

there is a diminishing gain in accuracy. For example, increasing user actions from 

20 to 40 requires twice the time waiting for user input, but only limited accuracy 

increase is seen.
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Figure 3.10: Variation of average EER with number of user actions in one-class training for five PIN combinations.
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Figure 3.11: Variation of FRR and FAR with the value of threshold for 3-2-4-4 and the two 8-digit PINs for one target user.

The second column of Table 3.3 further lists the exact values of averaged 

EER, with its standard deviation in parenthesis. In computing EERs, there are 85 

user actions included in the training process. As shown in Figure 3.11, in all three 

PIN combinations, there is a trade-off between FRR and FAR.

As mentioned earlier, four sets of features are included: acceleration, pres­

sure, size, and time. To measure how the four sets of features contribute to the 

final accuracy, we make four additional rounds of classification, solely based on 

each feature set. Figure 3.12 shows the accuracy results for the four individual 

feature sets, as well as those of combining them all together.

It can be seen from Figure 3.12 that, the combination of all four feature sets 

always outperforms individual feature set, as it is always with the smallest EER in
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PIN EER (One-Class)a EER (Two-Class)a
3-2-4-4 3.65% (3.58%) 3.68% (4.38%)
1-1-1-1 6.96% (6.01%) 7.01% (6.45%)
5-5-5-5 7.34% (5.38%) 5.27% (3.69%)

1-2-5-9-7-3-8-4 4.55% (6.23%) 3.21% (4.89%)
1-2-5-9-8-4-1-6 4.45% (4.15%) 4.51% (3.45%)

awith standard deviation in parenthesis

Table 3.3: User Verification Accuracies

Size r .TO3 
Time t r .w j  
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Pressure —  

All-Together ■ ■ ■

PIN Number

Figure 3.12: Comparison of performance from each feature set in one-class learning, as well as when they are combined 
together.

all different scenarios. This is because the four feature sets capture the different 

aspects of user tapping behaviors, and having them all together should most 

precisely represent who the target user is. Meanwhile, among the four individual 

feature sets, acceleration, pressure, and time perform similarly well and achieve 

more accurate results than size.

3.5.2 Two-Class Accuracies

Unlike one-class learning, a two-class classifier is trained on both the target user’s 

and other users’ data. Our experimental results show that two-class classifiers 

usually yield higher accuracy than one-class. Thus, if others’ data are available 

to the target user, the two-class classifier can be an optional implementation 

to achieve higher accuracy. In fact, this can be done by devices manufactures 

or mobile OS providers (e.g., Google) to pre-load the two-class classifier with
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anonymized user data for training purpose.

In training an SVM classifier, 50 of the target user’s actions are input as neg­

ative cases, and 50 of others' actions (randomly selected from our data set) are 

input as positive cases. The classifier is tested on the rest of the target user’s 

actions and the other users’ data. We make sure that there is no overlap be­

tween impostors in training and testing. In this way, the classifier aims to detect 

unknown impostors outside the training set.

Accuracy Vs Number of Users in Training

100

95

90

85
True Accept hate 
True Reject Rate

80
2 4 6 8 10 12 14 16 18 20

Number of Users In Training

(a) Accuracy Vs Number of Users in Training

Accuracy Vs Number of Users in Testing

True Reject Rate —• —  I 
! True Accept Rate a 00%

105

100

95

90

85

80
2 4 6 8 10 12 14 16 18 20

Number of Users in Testing
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Figure 3.13: Variation of Accuracies with number of users in training and in testing.

Figure 3.13(a) shows the dynamics of accuracy under the different number of 

other users (i.e., potential impostors) in training, in terms of true reject rate (TRR) 

and true accept rate (TAR). For easy presentation, we use ’’impostor” and ’’other 

users” exchangeably in the following part of this section. The error bars show
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Figure 3.15: Comparison of accuracies between one- and two-class learning. Lengths of error bars show the standard 
deviation of EER over users.

standard deviations over different combinations of the impostor set. We can see 

that more other users involved in training leads to a higher and more stable TRR 

(the rate of detecting an impostor). In the mean time, TAR stays relatively on the 

same level, regardless how many other users are involved in training.

Besides the number of training impostors (i.e., other users in training), we
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also evaluate the verification accuracy with respect to the varying number of test­

ing impostors. Figure 3.13(b) shows the dynamics of accuracy under the different 

number of impostors in testing, in terms of true reject rate (TRR) and true accept 

rate (TAR). Again, the error bars show standard deviations over different combi­

nations of the impostor set. With a larger impostor pool in testing, the average 

value of TRR stays similar, while its fluctuation getting smaller. It indicates that 

our method is robust in detecting a large pool of potential impostors.

Similar with the one-class classifier, there is also a trade-off between FRR 

and FAR in the two-class approach. Figures 3.14(a), 3.14(b), and 3.14(c) show 

the trade-offs between FRR and FAR in entering three different 4-digit PINs by a 

target user, respectively. We can see that by tuning the threshold value, one of 

the error rates decreases at the cost of increasing the other one.

The third column of Table 3.3 shows the averaged EERs for the two-class clas­

sifier, and Figure 3.15 visually compares the accuracy results with those of the 

one-class approach. While the two-class classifier achieves the similar accuracy 

as the one-class classifier in three scenarios, it clearly outperforms the one-class 

classifier in the other two scenarios.

3.5.3 System Overhead

In our implementation, the verification system is entirely built on a smartphone. 

As a stand-alone system, there is only a single user present for verification at 

any given time. There is no communication overhead associated with our user 

verification.

We first estimate the memory overhead of the verification process. The ver­

ification process is profiled using the Android SDK tool DDMS, and we find out 

that it only consumes 11.195 MBytes of heap memory during a one-class test­

ing process. The computational overhead is the sum of CPU costs in raw data 

processing (calculating features) and detecting (including classifying and deci-

64



Uw #1: Dte#*mltortty Scotm In Various Ifcpplng PotMont
t-f-1-1 U 4 4  1444*7444

01 1 14 I U  1 U  04 111 I U  I M  01 I 11 I U  I U  04 11J t U  I U  U  1 11 I U  I U  4

Utar#2: DMmHftrfty So o t m  in Vkrious Tipping JdiWon*
M*M #444 14447444

XIX# > IOC !X> (

04 1 II I U  I 01 1 11 t U  I 01 1 11 1 U  1 M  1 1 1 1  II I (I 1 II I M  l tt

Figure 3.16: Dissimilarity scores from one tapping position (i.e., one-handed while sitting) to the other two tapping positions 
of a same user. Upper and lower panels are for the two different users, respectively.

sion making). The pre-processing on one user input action of a 4-digit PIN takes 

only 0 .0 2 2  seconds. The detecting process takes another 0.474 seconds, where 

the major part lies in finding the nearest neighbor from all 85 reference feature 

vectors. The CPU cost is measured on a Samsung Galaxy Nexus, using two 

Date.getTimeO utility call at the beginning and end of the running time. Overall, 

the induced computational overhead is minor on the smartphone. In terms of disk 

space for storing user template, the signature of a single user profile generated 

by the training process consumes only 150.67KBytes. It is very affordable on an 

entry-level smartphone, let alone high-end models.

3.6 Additional Issues in Reality

3.6.1 Multiple Positions

So far we only measure the user tapping behaviors in a given position. How­

ever, it is quite possible that a user types in its passcode under different positions 

(e.g., single handed using the thumb). To handle different input positions, we can 

measure and store multiple behavioral patterns for different positions during the 

training period. The rich sensors equipped with smartphones allow us to easily 

detect the physical position of the device and choose the appropriate behavioral
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pattern for verification. For example, accelerometer readings straightforwardly 

signal if a user is in a moving or non-moving status. And gyroscope readings can 

even infer the user’s hand position (one-handed vs. two-handed) when tapping 

on the smartphone, as shown in a recent study [46].

To explore on multiple tapping positions, we further conduct two more sets of 

empirical measurements. First, we collect data with only one-handed tapping, 

which is in parallel with the two-handed case in Section 3.5. In one-handed tap­

ping, the phone is held in one hand, and tapped with the thumb finger of the 

same hand. Due to the use of a different finger, the one-handed tapping behavior 

is different from that of two-handed. However, with the one-handed data set as 

the training data, we perform the same evaluation process as in Section 3.5 and 

achieve an average EER of 3.37% over all PINs in the on-handed case, indicating 

the effectiveness of our approach just like in two-handed tapping.

In addition to different hand positions, there are also various body positions a 

user would switch from time to time. While tapping its passcode, a user can be 

sitting, standing, or even slow walking. It is desirable to see how different body po­

sitions affect a user’s tapping behavior. To answer this question, we carry out an 

additional experiment with two users, who tap in PINs with three body positions: 

sitting, standing, and walking. Using the trained model with one-handed tapping 

while sitting as the baseline, Figure 3.16 shows the dissimilarity scores to three 

different tapping positions, sitting, standing, and walking. Our major observation 

is that: as long as the user remains static, its tapping behaviors are similar under 

different body positions. Note that we do not intend to cover all possible tapping 

positions in different environments (which is almost impossible), but instead to 

draw some insights based on the common scenarios.

Our approach will work well for different input positions: sitting or walking, 

single-handed or two-handed. The challenge is merely to increase the training 

period and cover different input positions with more feature sets, which will im-
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Figure 3.17: Effect of mimic attack shown in degree of dissimilarity from the target user. Subfigures, from left to right, 
correspond to all features considered, and each individual feature set (acceleration, pressure, size, and time). There are 
two mimic “impostors", and 10 trials before and after their observations on the target user.

pose a larger memory and CPU overhead in verification. However, we could 

further reduce the system overhead by optimizing the classifier implementation 

from different aspects of mobile devices. Note that the current one-class clas­

sifier has not been optimized. We will further explore this direction in our future 

work.

3.6.2 Mimic Attacks

Theoretically, our behavior-based verification system can be bypassed if an im­

postor can precisely mimic the tapping behaviors of the device’s owner. However, 

this is extremely difficult if not impossible in practice. Intuitively, even if the im­

postor has overseen how the device’s owner previously entered the passcode, it 

might be able to mimic the timing aspect. But the other features, such as pres­

sure, acceleration, and size, are much more difficult to observe and reproduce.

In order to quantitatively measure the effect of mimic by observation, we set 

up an experiment involving three users. One of them is the target user who is 

observed closely by the other two “impostors" who try to mimic the target user’s 

tapping behaviors. Impostor #1 has the same gender and similar hand/finger size 

as the target user, while impostor # 2  has different gender and larger hands/fingers 

than the target user. The goal is to see how physiological differences can impact 

the outcome of mimic attacks. Before mimicking, the two impostors closely ob­

serve (over the shoulder) how the target user tapped in the PIN 3-2-4-4 for 10 

times each. They are also guided to especially pay attention to the four features
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in our approach, i.e., tapping rhythm, acceleration, pressure, and touched size.

Figure 3.17 plots the dissimilarity scores from the target user’s model to the 

two impostors before and after their mimic trials. The leftmost subfigure corre­

sponds to all features included, and the rest four correspond to individual contri­

bution from the four different features, respectively (acceleration, pressure, size, 

and time). Our experimental results clearly show that there is no significant im­

provement in mimicking given the behavior observation. Taking all four features 

into account, it is evident that a mimic attack is very hard to succeed. For each in­

dividual feature (acceleration, pressure, size, and time) shown in Figure 3.17, we 

can see that only the dissimilarity scores of acceleration are consistently reduced 

(i.e., its score range shifts towards that of the target user after observation). How­

ever, for the other three features (including pressure, size, and time), out of the 1 0  

mimic attempts, just one or two trials may be slightly closer to the target’s model, 

but their score ranges spread even wider. Thus, the behavior mimicking does not 

increase the chance of evasion with respect to these three features. This some­

what contradicts our intuition that timing would be easier to mimic than the other 

features.

With the experimental results shown in Figure 3.17, we believe that the ro­

bustness of our approach against a mimic attack mainly lies in the following three 

aspects.

•  There are multiple dimensions in the features we used and most of them 

are independent from each other. Although an impostor may mimic one 

dimension without much difficulty, mimicking multiple dimensions simulta­

neously is extremely difficult as small physical movements like tapping are 

hard to observe and precisely reproduce. For example, acceleration directly 

relates to tapping force {F =  m ■ a), so if the impostor intentionally manages 

to tap in a gentler or harder fashion, its behavior can get closer to that of 

the target user. However, pressure is harder to mimic because it equals
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to tapping force divided by touched area. These two independent factors 

must be adjusted at the same time, which is more challenging. Timing (or 

tapping rhythm) is also hard to mimic, because timing contains multiple di­

mensions in our approach: 7 in a 4-digit PIN, and 15 in a 8 -digit PIN. Those 

individual time intervals (especially key-to-key intervals) are relatively inde­

pendent. An impostor may mimic the target user with a roughly fast or slow 

rhythm, but it is hard to reproduce the specific key-to-key dynamics.

•  The fine-grained measurement resolution makes our features hard to mimic. 

For example, in our experiment, timing is measured in order of millisecond. 

This time resolution is much higher than human perception, and hence it 

is very hard for an impostor to accurately and consistently mimic tapping 

rhythm at such a low-level resolution.

• The physiological differences from the target user set up another barrier for 

mimic impostors. In our feature set, the touched size is heavily affected 

by the finger size, and the tapping rhythms also depend on hand agility 

and geometric shape. In general, it is very difficult for a person with bigger 

hand/fingers to mimic someone with smaller hand/fingers, and vice versa.

As more sensors have been available on mobile devices, more features will 

be included for more accurate user verification, and hence mimic attacks will just 

become less likely to succeed.

3.6.3 User Behavior Changes

This work builds on the assumption that a user’s behavior is consistent and no 

abrupt change happens over a short period of time, but the assumption might not 

always be true, e.g., due to a physical injury. In such scenarios, the behavioral- 

based verification mechanism should stay minimally intrusive to the user. One 

feasible solution is to contact with the service providers to disable the verification

69



function remotely and start the re-training. The purpose of our user verification is 

to provide additional security in common day-to-day usage while still allowing the 

user to disable it in rare cases. As we have shown previously, the sensitivity to 

false positives and negatives are controlled by various threshold values. Whether 

or not exposing the sensitivity control, e.g., setting it to Low, Medium, and High, 

can improve user experience is debatable. On one hand, it allows users to make 

a conscience choice to trade off between security and convenience. On the other 

hand, it is no longer user-transparent.

3.6.4 Passcode Changes

In our approach, only the tapping features of the currently active passcode are 

measured and recorded in a user’s smartphone. One might ask what happens 

when the user need to change its passcode? Although people do not frequently 

change their passcodes, updating passcode in a quarterly or yearly basis is rec­

ommended or required by most passcode-based systems. When this happens, 

our verification system could automatically remain inactive for a while and start 

another training session to build a new set of tapping features based on the newly 

created passcode. The characterization of tapping features are conducted in 

background till a stable pattern has been successfully compiled after multiple 

trials. Note that the methodology of our scheme is not bounded to certain pass­

codes. In other words, our approach can be applied to any passcode a user 

chosen in practice.

3.7 Conclusion

As mobile devices are getting widely adopted, ensuring their physical and data 

security has become a major challenge. A simple peek over the shoulders of the 

device owner while the passcode is being entered and a few minutes of hiatus
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would allow an attacker to access sensitive information stored on the device. 

Using more complex passcodes and/or secondary passcodes can reduce the 

chance of such attacks, but it brings significant inconvenience to the users. We 

found that a user’s tapping signatures if used in conjunction with the passcode 

itself can also achieve the same goal, and moreover, the added security can be 

obtained in a completely user-transparent fashion.

Previous works have shown the feasibility of this approach, but their high er­

ror rate makes these mechanisms impractical to use as too many false positives 

will defeat the purpose of being user-transparent. Having collected data of over 

80 different users, explored both one-class and two-class machine learning tech­

niques, and utilized additional motion sensors on newest generation of mobile 

devices, we are able to demonstrate accuracies with equal error rates of down to 

3.65% for 4-digit PINs, and 3.21% for 8 -digit PINs.
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4 Exploring Fitts’ Law in Web Brows 

ing

In this chapter, we describe our work on applying Fitts’ Law to model natural 

web browsing behaviors from end users. The chapter is organized as follows. 

Section 4.1 describes the background of Fitts’ law and web browsing behavior, 

and surveys related work. Section 4.2 details our data collection and processing. 

Section 4.3 evaluates the validity of Fitts law under natural web browsing, along 

with its proposed error model. Section 4.4 discusses several Fitts’ law related 

issues. Section 4.5 concludes the chapter.

4.1 Background and Related Work

A large number of research works have been conducted to learn web brows­

ing behaviors, with the goal of measuring user interests [17,68,94], web page 

quality [97], search quality [1,52], predicting user demographic [51], and provid­

ing personalization [101]. The existing studies are heavily based on information 

of pageview activities, including pageview paths, time spent on webpages, fre­

quencies of webpage visiting, etc. By contrast, in this chapter, we explore human 

browsing behavior from a different perspective: the kinetics of user point-and-click 

actions in web browsing. Our work is useful in complementing previous works to 

better model user browsing behavior in a more comprehensive manner.
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We focus on studying Fitts’ law, one of the most influential laws in human- 

computer interaction research for decades. Essentially, Fitts’ law reveals the 

length of time it takes to perform a task with a pointing device such as a mouse. 

For instance, how long does it take to move the mouse cursor to a particular po­

sition on the screen. It is expressed as in Eq. 1 .1 . The significance of Fitts’ law 

is that it provides quantitative information regarding the accumulated time of mul­

tiple perceptual-motor feedback cycles for users to interact with a system using a 

pointing device.

Fitts’ law is closely related with several theories on submovement analysis, 

and the major ones, in chronological order, consist of, the iterative corrections 

model [29,61], the impulse variability model [92] (also known as the Schmidt’s 

law), and the optimized initial impulse model [74] (also known as the Meyer’s 

law). A comprehensive review of the three models can be found in [89]. The 

first two models emphasize on either solely feedback control or solely initial im­

pulse, while the third model (the Meyer’s law) combines these two views, and 

gave a satisfactory explanation supported by empirical evidence. Therefore, the 

underlying message from Fitts’ law is an optimal planning of human motor-control 

bounded by speed-accuracy tradeoff1. In another word, even in a task as simple 

as reaching for a target, human motor skill automatically balances the speed and 

accuracy in an optimal way, with an outcome of target-reaching both accurately 

and rapidly.

Note that Schmidt’s and Meyer’s laws can serve as independent models for 

pointing actions, and they are closely related to Fitts’ law. The former is for rapid 

pointing, and the latter constitutes a more generalized law (combining both Fitts’ 

and Schmidt’s laws). However, in terms of application, Schmidt’s and Meyer’s 

laws require submovement analysis at low level, while Fitts’ law only involves 

measurements (i.e., total movement time, total distance, and target size) without

1ln presence of speed-accuracy tradeoff, one cannot accurately aim for a target with no error 
while moving extremely fast.
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Figure 4.1: Step-wise movement towards target [35]

any submovement-level variables. Therefore, due to its simplicity and ease-of- 

use, along with its success in many aiming-related experiments [6,54,62,63,69, 

89], we have chosen Fitts’ law as the focus of this study, instead of the other 

laws. And our objective is to specifically verify if Fitts’ law alone is applicable 

for modeling daily pointing actions with computer mice in a natural web browsing 

environment.

Here for simplicity, we present the first model, i.e., the iterative corrections 

model, proposed by Crossman and Goodeve [29] in 1963. This is not a perfect 

model in itself, but it especially reveals how the logarithmic term in Fitts’ law came 

from perceptual-motor feedback loops. Figure 4.1 shows how the movements in 

each step get gradually smaller as the target gets closer, involving discrete cycles 

of sensing and movement [35].

It is assumed that each of submovement reduces the distance to the target 

geometrically, that is, it moves a constant fraction 1 -  r  of the remaining distance. 

Each of them takes the same time t. When remaining distance is such that the 

error circle of the remaining movement is less than the size of the target then we 

get inside the target. When the target has been reached:

74



Solving for N:

1 , 2A 
log2l / r ° g2W

The time required for completing all submovements are:

T Nt  log2 l / r  + log21/r l0g2 W'

This especially explains the logarithmic term in Fitts’ law.

A large body of prior works have been dedicated to Fitts’ law, since it was first 

proposed in 1954 [39], Seminal works in the HCI (human-computer interaction) 

community include [15], [96], [108], [113], etc. However, only a few of existing 

literatures concern with real-life pointing behaviors, based on unobtrusively col­

lected data.

Chapuis etal. [20] are among the first to notice the need to stress-test Fitts’ law 

in natural GUI settings. They questioned if one can apply the Fitts’ law obtained 

from controlled laboratory experiments to characterize the pointing activities “in 

the wild”. Their underlying motivation is the same as ours, pointing "in the wild” 

involves far more cognitive processes than in a controlled laboratory setting, such 

as deciding what is the target, coping with possible interference from the field 

environment or planning for higher-level tasks. In their field study of 24 users, the 

results indeed deviate from those in controlled laboratory environments.

Slijper etal. [95] applied Bayesian statistics to model hand movements, drawn 

from a large-scale collection of users’ daily mouse movements. Human arm 

movements are found to be strongly correlated to prior experience, making them 

predictable via Bayesian statistics analysis. Thus, Slijper et al. achieved their pri­

mary goal, which is to predict hand moving directions by utilizing the directional 

distribution.

Hust et al. [53] conducted another field study on the evaluation of real-life 

pointing performance for motor-impaired people. High variance is found within
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each participant, implying that it is insufficient to measure performance based 

on a single laboratory session. However, as target width and distance are not 

captured in the data collection, the theme of their study is not focused on the 

evaluation of Fitts’ law. Moreover, since the experimented subjects are with mo­

tor impairments, it is unclear if a healthy person will still display considerable 

variance.

More recently, the differences between the natural and laboratory controlled 

mouse movements are further acknowledged in Gajos et al.'s work [44], They 

found that, many of those mouse pointing movements “in the wild” are affected 

by extraneous factors, which include, for example, deciding what task to perform 

next and searching for the right user interface element. Motivated by this ob­

servation, the authors unobtrusively collected mouse pointer trajectories from 18 

participants. A classifier is then trained to discriminate between deliberate, tar­

geted mouse pointer movements and those movements that are distracted.

Meanwhile, Evans and Wobbrock [38] developed the Input Observer, a novel 

tool to passively collect user input data, from which they measured both text en­

try and mouse pointing performance “in the wild”. With regard to pointing per­

formance, the authors carefully measured target size and pointing errors by uti­

lizing crowdsourcing. In the process of raw pointing data, a novel segmentation 

technique is employed to identify each trial, and further, outlier removal is used 

to damp the noise. As a result, the pointing performances “in the wild” are mea­

sured to be very close to that from laboratory studies, in terms of average pointing 

error, movement time, and throughput. However, in their work, only a small sub­

set of collected data ( - 1 1 % of pointing data) are considered in order to obtain 

laboratory-quality results; by contrast, in this chapter, as our goal is to see if Fitts’ 

law works well in regular web browsing activities, there is minimal data filtering 

done.

Overall, our work significantly differs from these previous works in terms of
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scale. Whereas the largest data set of the previous studies includes 24 volunteer 

users, our study involves two orders of magnitude more human users. There are 

more than 1,000 participants who are real-world Internet users, and their pointing 

actions are recorded while using a web browser. Moreover, we solely focus on 

pointing behaviors in web browsing, while the previous works study pointing data 

from many different applications at the client side.

4.2 Data Collection

This work includes two different data sets, obtained under two different circum­

stances, for the purposes of two different types of measurements. The data sets 

are described below, followed by an explanation of how the data is processed into 

a meaningful form.

4.2.1 Data Sets

In order to assess Fitts' law in a real-world setting, we first collect data outside of 

controlled laboratory conditions. More than 1,000 unique Internet users' mouse 

movements are recorded by JavaScript code embedded on a web forum 2 , and 

submitted passively via AJAX requests to the web server. Figure 4.2 shows the 

layout of the website homepage. Based on the vBulletin template, the webpage 

has a simple outlook comprised of text links stacked vertically. Icons and im­

ages are present too, but not visually prominent as text links. It is impossible to 

know about online users’ biographical information (gender, age, education back­

ground), and there is no guarantee on the amount of data collected for a certain 

user (a forum user could be logged in for a long time with frequent mouse ac­

tivities, or could perform just one click and then leave). On the other hand, the

2 The website is generated from vBulletin forum software, and has a similar layout as https: // 
ww.vbulletin.com/iorum/forum.php. In addition, we do not argue that this is a representative 
website, but it suffices as a case study for exploring the Fitts' law in the wild.
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Figure 4.2. Layout of the webpage for data collection. Text links are highlighted by red boxes.

breadth of this corpus represents a large sample of real Internet users browsing 

naturally, as they were free to browse webpages without being interrupted. Thus, 

it is ideal for studying how well Fitts’ law models natural pointing behavior when 

using a web browsing application.

The second data set is collected to study the effect on Fitts' law of pointing 

actions using different pointing devices. This data collection is conducted in a 

controllable environment. Ten people are invited personally to participate in the 

second set of data collection. They use two different pointing devices, mouse 

and touchpad, to interact with GUIs. During the data collection, the users’ activ­

ities are performed naturally without any interference. Their pointing actions are 

recorded using the RUI tool [67].

4.2.2 Data Processing

The raw mouse movements are represented as the tuples of timestamp and 

Cartesian coordinate pairs. Each tuple is in the form of ( a c t io n - ty p e ,  t, x, y, t a r g e t - t y p e ) ,  

where a c t io n - t y p e  is the mouse action type (a mouse-move or mouse-click), t 

is the timestamp of the mouse action, x is the x-coordinate, y is the y-coordinate, 

and t a r g e t - t y p e  is the type of clicked target (a text link, text, image, or form 

element). All timestamps are collected in milliseconds, and coordinates in pixels.

These raw data points then are further processed to extract the pointing ac­



tions. Here we choose to consider only point-and-click actions with a text link tar­

get, because the overwhelmingly dominant majority of pointing targets in the fo­

rum website are text links. A point-and-click is defined as a continuous movement 

followed by a click. A continuous movement is defined as a sequence of move­

ment with little to no pause between the beginning and end of the movement. 

Here “little to no pause” means that the time lapse is less than 100 milliseconds 

between any two adjacent mouse records. Here 100-millisecond is an empirical 

threshold, which is roughly the shortest time scale of human perception [16]. The 

time for a point-and-click action is measured from the first mouse-move event to 

the last mouse-move event. In our data collection algorithm, raw mouse records 

are only generated with either mouse-move or mouse-click events. Therefore, 

with respect to a pointing action with multiple pauses, as long as the period of 

zero-velocity is less than 1 0 0 ms (which is true in most cases), multiple submove­

ments are still preserved as one point-and-click. We only choose point-and-click 

actions because a movement that ends in a pause (rather than a click) could just 

be the user idly “shaking” the mouse cursor or moving it out of the way on the 

screen. These types of actions do not have a definite target, so they are not cov­

ered by Fitts’ law. Conversely, if a user clicks at the end of the movement within 

a web browser, highly likely it is clicking on a text link at the forum website, and 

thus we can assume that the pointing action has an aiming target—the text link. 

Note that our collected pointing data are associated with clicking on text-links, 

as missing the target would fail to send a server request. The only exception 

here is when a user clicks on a text-link accidentally while aiming for a different 

GUI target, but this is very unusual. Therefore, we assure that each collected 

point-and-click action within a web browser has a definite target and is error-free.

For each of these point-and-click actions, we calculate the time to complete 

the pointing action as the difference in timestamp from the first mouse-move event 

to the last one before the click. The ID  is then calculated from the distance,
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the difference in Cartesian coordinates between the beginning of the movement 

and the click, and the target size. It is important to measure the target size as 

accurately as possible. Several models have been proposed to extend Fitts’ law 

to two dimensional targets. It has been evaluated by [70,111] that one of the best 

model is this formula:

T  = a + b ■ log2(— m  + 1), 
rran(Vv, H )

where min(W, H) is the the smaller dimension of the height (H ) and width (W ) of 

a rectangle target. This model reflects the wide founded intuition that the smaller 

o \ H o t W  should dominant overall performance. For this experiment, we filter all 

point-and-clicks so that only those with a text-link as target are considered. Of 

all clicks, 17 pixels is the font height of the text hyperlink, which is the smaller 

dimension of the text link as a clicking target. For this very reason, we choose 17 

pixels as a universal target width for all clicks on a text link.

To get the mean movement time M T  in Fitts’ formula Eq. 1.1, raw data must 

be averaged. We group the time to point values by ID into buckets of width 0.5, 

then each bucket is averaged to produce a single mean time (MT) point on the 

graph.

4.3 Evaluation

Fitts’ law describes a linear relationship between the index of difficulty (ID) of a 

pointing task and the mean time (MT) to complete that task. We may not know 

the values of parameters a and b ahead of time, but we know the fit should be 

linear. Thus, to evaluate how well Fitts’ law applies on a given data set, we plot 

the MT vs. ID of the pointing actions extracted from the data set. We calculate 

the correlation coefficient (r) for each plot to measure how closely it fits a linear 

function. An r value of close to 1.0 means perfectly linear data (100% linear
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Figure 4.3: ID vs. Mean Time plotted for the forum users’ data set. The linear correlation is over 98%. Every data point 
in the figure is averaged over 180 raw data points.

correlation), while an r  value of close to 0 .0  means completely random data (0 % 

linear correlation) .3

4.3.1 Fitts’ Law in Natural Browsing

How well does Fitts’ law apply in a natural web browsing environment? To answer 

this question, we evaluate the linearity of the first data set, containing 1,047 real- 

world forum users’ data. Figure 4.3 shows the mean movement time (M T ) as 

a function of ID,  where error bars show the standard deviation of movement 

time. The data fit a linear regression with r showing a 98.28% correlation, which 

strongly suggests that the forum data follows Fitts’ law. We can safely conclude 

from this that Fitts’ law is robust enough to have real-world applications, not just 

under contrived laboratory situations. The a and b coefficients are 48.00 ms and 

145.84 ms/bits, respectively. Here the non-zero value of parameter a is partially 

due to fact that Fitts’ law does not apply to movements with very low IDs  [29].

However, without averaging, Fitts’ law has a poor fit. Given an actual raw 

movement time Te, we define percentage error to measure the relative deviation

3The correlation coefficient can actually range from -1 to 1; an r  value close to -1.0 would mean 
the data perfectly fits a line with negative slope (i.e., an inverse relationship). All data discussed 
in this work has a positive slope (i.e., a direct relationship).
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Figure 4.4: Probability distribution of E%, the relative deviation from Fitts' prediction, from raw movement times of natural 
web browsing. Histogram bars denote the portion of E% with values in the corresponding block. Below the histogram 
is the scattering of raw data, where the location of dense area (between -50% and +50%) indicates the most probable 
values of E%.

A perfect prediction from Fitts’ law corresponds to E% =  0. The larger the absolute 

value of E% is, the more Te deviates from Fitts’ prediction. Figure 4.4 shows the 

probability density of percentage error E% (defined in Eq. 4.1), with the scattering 

of raw data in the lower panel. The vertical line at E% =  0% (means zero error) 

indicates a perfect prediction. The percentage errors from Fitts’ law to raw data 

span from -100% to 350%, and are highly concentrated between -50% and +50%. 

This wide range of scattering in terms of percentage error demonstrate, when 

applied to natural browsing, Fitts’ prediction is not very accurate and a proper 

error model should be taken into account.

To measure the average deviation from Fitts’ model, we define the mean ab­

solute percentage error (MAPE) as:

to the Fitts’ prediction MT:

(4.1)

M  _  1 0 0 %  ^  Teti -  M T (4.2)

where n is the number of data points, Te>i is the ith actual movement time, and 

MTi is the Fitts’ prediction corresponding to the ID  of ith data point. By averaging
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all 5,270 raw records, we have an MAPE of 46.40%. This is a significant deviation 

and cannot be ignored. In other words, when estimating user movement time on 

webpages using Fitts’ model, one should take into account a relative error of 

around ±46.40%.

Of course, the above deviation from Fitts’ model are all based on raw data 

points, not averaged ones as in Fitts’ original definition. And from a practical 

point of view, if one intends to utilize Fitts’ law as a model on raw data, it is crucial 

to ask: how should raw data be clustered and averaged? How would the size of 

clusters affect the accuracy of Fitts’ law?

As in our case ID  is continuous, we have to partition the observations along 

the ID  axis before averaging raw movement time Tes. The raw data (represented 

as pairs {ID, Te)) are clustered and averaged by groups of size S, ranging from 1 

to 50. For instance, a group size of 10 means every 10 adjacent records in the as­

sorted data are averaged. (In Evans and Wobbrock’s work [38], a more sophisti­

cated clustering technique is employed; by contrast, as our goal is not to produce 

laboratory-quality results, but to verify if Fitts’ law works well in web browsing, 

we choose a relatively straightforward and simple clustering method.) Intuitively, 

when more data are included for averaging in each group, the closer the aver­

aged data should be to the Fitts' predicted values, which leads to a smaller mean 

absolute percentage error (MAPE). Figure 4.5 plots MAPE as a function of clus­

ter size, with its value from 1 to 50. It confirms our expectation, and furthermore, 

MAPE drops with an exponential rate with the increasing number of actions in a 

cluster. Note that with a cluster size of above 40, MAPE stabilizes at around 10%.

4.3.2 Error model

In fact, the large deviation of raw movement time from Fitts’ prediction is men­

tioned in many previous studies [20,35] under laboratory settings, but few of them 

elaborate in details on this issue. And it is learned that the deviation from Fitts’
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Figure 4.5: Mean absolute percentage error (MAPE) drops exponentially with the increase of cluster size. A cluster size 
S means every S raw data are clustered and averaged. Note that above 40 actions per cluster, MAPE stabilizes at around 
10%.

model is due to endpoint variability in human movement. More specifically, the 

spread of hits in aimed movement forms a Gaussian distribution about the target 

center [29,39,47,70,106,114].

An error in aimed pointings occurs when a user misses a target. Errors are the 

outcome of endpoint variability. An error model aims to predict error rates -  the 

probability of missing a target -  given the index of difficulty ID  and the movement 

time. Intuitively, a higher ID  (meaning a more difficult pointing task) and a shorter 

movement time (meaning a faster pointing action), lead to a higher error rate.

In particular, Wobbrock etal. [107] derived an error model from Fitts’ law it­

self, based on the assumption that distance from endpoint to target center forms 

a Gaussian distribution. They evaluated their error model through a series of 

controlled experiments, and it is proved to be a very well fit. By employing the 

“effective movement time” from [106,107], Fitts’ law (Eq. 1.1) can be rewritten as

where We, is the effective target width coincident with the actual (unaveraged) 

movement time Te. Solving for We, we have

(4.3)

(4.4)
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Figure 4.6: CDF for the effective width We for all movements and for the fast movements. Note that both distributions are 
not Gaussian, as were assumed in prior works.

Introducing We allows for mathematically growing or shrinking the effective target, 

to correspond to a actual movement time. Under the heuristic that We follows a 

normal distribution about the real target width, Wobbrock etal. are able to derive 

an accurate error model for laboratory controlled movements.

In this chapter, we intentionally follow Wobbrock’s error model as a guideline 

to examine if pointing actions “in the wild" can be interpreted with the same error 

model in laboratory studies. And we find that, different from laboratory results, 

in a natural browsing environment, fast movements have a different error model 

from slower movements. To further understand the high uncertainty of the ac­

tual movement time Te with respect to Fitts’ prediction (shown in Figure 4.4), we 

define three categories of movements: one is with better pointing performance 

(i.e., shorter movement time) than Fitts’ prediction {fast movements), one is with 

nominal performance comparative to Fitts’ prediction {medium movements), and 

the third one with worse performance than Fitts’ prediction {slow movements) .4 

They are defined as follows:

T% < 0.9 -» fast movements:

< 0.9 < T% < l . l  -*  medium movements;

T%> l . l  slow movements.

4This is in the same spirit with Card, Moran & Newell’s division of three imaginary humans 
according their HCI performance: Fastman, Slowman and Middleman [16].

all movements 
fast movements
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Our choice of the boundary values above is based on the human users’ per­

ception of fast, medium, and slow movements. Given the near-perfect fit on the 

average movement time (refer to Fig. 4.3), the Fitts’ predicted value is set as 

the nominal case. Thus, fast movement corresponds to moving towards a target 

faster than Fitts’ prediction (better pointing performance); slow movement is with 

a slower average speed than Fitts’ prediction (worse pointing performance); and 

medium movement is the average case in accordance with Fitts’ prediction (typi­

cal pointing performance). And our intention of dividing into the three categories 

is to explore how the range of deviation from Fitts’ law affects their error models. 

Of all 5,084 raw data records, there are 45.44% fast movements, 12.84% medium 

movements, and 41.72% slow movements. Faster and slower movements have 

distinct nature, because of the difference in closed-loop and open-loop move­

ments [47,70,107]. An aimed movement by human consists of multiple loops of 

feedback from neural system (to determine the next submovment) and constant 

motor fine-tuning. Open-loop movements are without fine-tuning, while close- 

loop movements are in contrast with careful fine-tuning. Setting Fitts’ prediction 

as a standard bar, we speculate that faster movements are more prone to open- 

looped.

For each of the categories, we calculate the effective width We by Eq. 4.4 and 

examine its statistical properties. We apply the values of parameters a and b we 

get in Section 4.3.1. Note that in Eq. 4.4, for those records with Te < a, which 

implies a very quick point-and-click, We < 0. We first filter out those records with a 

negative We, which represent 3.53% of all data. Figure 4.6 plots the distribution of 

effective width We. As we can see from the CDF curve for all movements, it does 

not readily follow a normal distribution as prior works assumed. The same applies 

to fast movements as one category. Figure 4.7 shows the distributions for slow 

and medium movements, which are Gaussian-shaped, with medium movements 

more Gaussian-like. Overall, it is clear that fast movements follow a completely
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Figure 4.7: CDF for the effective width Wt for the medium and slow movements.
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Figure 4.8: ID vs. Mean Time plotted for all collected physical mouse traces and all touchpad traces. Each data point in 
the figure is a result of averaging 180 raw data records. Note that the linear correlation is similar for both devices (over 
98% in both cases).

different statistical model from other two categories, which implies a different error 

model.

The derivation of the Fitts’ law error model from Wobbrock et al. [107] then 

becomes:

and f(x)  is the probability density function of the distance from target center, 

which is not necessarily a normal distribution.

Regarding the observed distinction between faster and slower movements, it 

is evident that Fitts’ law does not model fast movements well. Rather, faster move­

ments tend to be dominated by initial impulse, which is more fit into Schmidt’s 

law [92].

where
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Figure 4.9: ID vs. Mean Time plotted for User 1’s physical mouse trace and touchpad mouse trace. Each data point in 
the figure is a result of averaging 10 raw data records.

4.3.3 Effect of Pointing Device

How does the choice of pointing device affect Fitts’ law? While many early Fitts’ 

law studies were performed using a stylus [40], recent studies have used many 

other pointing devices, including physical mice [15]. Does this choice affect the 

accuracy of the Fitts model? What about the use of a laptop touchpad? To an­

swer this question, we evaluate the linearity of the second data set, containing 

both physical mouse and touchpad traces from across 1 0  people, for a total of 8  

mouse traces and 7 touchpad traces. Figure 4.8 shows the combined physical 

mouse data plotted alongside the combined touchpad data. The physical mouse 

data show a linear correlation of 99.71%, a nearly perfect linear fit. The touch­

pad data matches the physical mouse data for low ID pointing tasks, but diverges 

somewhat for high ID pointing tasks. However, its r  value still shows a 98.04% 

linear correlation, strongly suggesting that Fitts’ law accurately models pointing 

tasks with either type of pointing device. The close similarity between their corre­

lation coefficients indicates that the choice of pointing device does not impact the 

law’s applicability -  again, showing that Fitts’ law is robust to different real-world 

environments.

The divergence of touchpad data at high ID values implies that, in reaching 

for a distant hyperlink (which leads to a high ID), touchpad is different from a 

traditional mouse. In the case of using touchpad, a user tend to make multiple
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Figure 4.10: ID vs. Mean Time plotted for User 2's physical mouse trace and touchpad trace. Each data point in the figure 
is a result of averaging 10 raw data records.

swipes before reaching a distant target. While using a traditional mouse would 

usually be completed in a single swipe. In the touchpad data, what we have 

recorded as “continuous movement” is actually the last swipe, in which the user 

is likely to speed up, and that makes MT smaller than Fitts predicted.

One can also compare the traces recorded from one individual on two different 

pointing devices, for those users who recorded both physical mouse and touch­

pad data. There are three such users. Figure 4.9 shows the results of plotting 

User 1 ’s mouse and touchpad traces. The relationship shows a similar trend as 

in the combined case -  the data matches at low ID values but diverges at high 

ID values. However, the data still appears to be mostly linear.

Figure 4.10 shows the results of plotting User 2’s single mouse trace and 

touchpad trace. Here, the mouse trace is linear as expected, but touchpad trace 

diverges greatly, even showing a downward nonlinear curve at high ID values. 

This shows that even for a single user, environmental factors can cause a dif­

ference in pointing actions from trace to trace, but when averaged the pointing 

actions all fit the Fitts model.

Figures 4.11,4.12 and 4.13 show the results of plotting User 3’s single mouse 

trace and two touchpad traces. All of this user’s data follows a tightly correlated 

strong linear relationship. This shows that it is possible for a user’s pointing ac­

tions using a touchpad to very closely match his or her pointing actions using a 

physical mouse. Thus, the use of different pointing devices does not break the
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Figure 4.11: ID vs. Mean Time plotted for User 3's physical mouse trace and touchpad trace #1. Each data point in the 
figure is a result of averaging 10 raw data records.

Fitts model.

Note that the two users in our measurement above point faster with touchpad 

than mouse (refer to Figs. 4.9 and 4.10). This somewhat deviates from the ob­

servation of previous works [37,71], where users point slightly faster with mouse 

than touchpad. Two reasons might apply here. Firstly, in our measurement, a 

user’s movements are confined in the browser window. As touchpad is a friendly 

environment for short-range movement (i.e., one finger stroke), it is no surprise 

to see some faster pointings with touchpad than mouse within the browser win­

dow. Secondly, both touchpad and mouse devices have been greatly improved 

than two decades ago (when previous experiments [37,71] are done), and thus 

it is quite possible that the observation made two decades ago does not hold 

nowadays in some scenarios.

4.3.4 Standard Deviation of Movement Time

The Fitts’ law formula describes the mean time to complete a pointing action, 

and thus Fitts’ law research in general focuses mainly on metrics involving the 

mean. However, a model is not defined solely by its mean value; there are also 

other considerations to take into account. For the purposes of this work, we focus 

specifically on the standard deviation (and, by extension, the variance) of the 

time to complete a pointing action given by the Fitts’ model under a natural web
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Figure 4.12: ID vs. Mean Time plotted for User 3's physical mouse trace and touchpad trace #2. Each data point in the 
figure is a result of averaging 10 raw data records.
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Figure 4.13: ID vs. Mean Time plotted for User 3’s touchpad traces #1 and #2. Each data point in the figure is a result of 
averaging 10 raw data records.

browsing environment.

To analyze the variance present in the Fitts model, we perform the same Fitts’ 

law calculations on the first data set containing 1,047 forum users' traces. This 

time, however, we plot the ID  of the pointing task versus the standard deviation 

of the time to complete the pointing action, rather than the mean time to point. 

Figure 4.14 shows the results. Clearly, Fitts’ law describes not only a linear rela­

tionship between ID  and the mean pointing time, but also a linear relationship be­

tween ID  and the standard deviation of pointing time. In other words, the higher 

the ID  of a pointing task, the more variance there is in the time it takes different 

users to complete such a task. This can be explained by signal-dependent noise 

in human neuromotor systems [50], which increases with the growth of control 

signal strength.

Touchpad (Trace # i  
Touchpad (Trace #2
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Figure 4.14: ID vs. Standard Deviation of Fitts’ law calculations for the forum users' data set. Note the linear relationship.

User Gender a [ms] 6 [ms/bits]
Correlation

 J?----- MAPE
Movement Categories 

Slow Medium Fast Device
#1 Male 6.28 117.14

£&£18
# 3  Male -21.68 242.52

# 5  Female 50.52 118.74

0.933 41.73% 41.33% 13.68% 44.99% Mouse

0936 3324%  43.80% 14.60% 41.61% Mouse

0.963 42.59% 41.54% 13.03% 45.42% Mouse

Table 4.1: Fitts' Law Related Parameters for Users of Mouse

4.4 Discussion

In this section, we discuss four related issues of Fitts’ law in the context of web 

browsing: firstly, we derive an analytical estimate on the inaccuracy in our dis­

tance measurement, and further show that the caused inaccuracy is minor over­

all; secondly, in acknowledge of the difference between web browsing and tra­

ditional Fitts’ law experiments, we provide a guideline on how to apply Fitts’ law 

to web browsing; thirdly, as touchscreen (on mobile phones and tablets) has be­

come increasingly popular for web browsing, we discuss if it is possible to extend 

Fitts’ law to touchscreens; lastly, we present the Fitts related parameters for cer­

tain users, and preliminarily explore the possibility of user profiling.

4.4.1 Inaccuracy on Distance Measure

In our experiment, the distance to the target (A in Eq. 1.1) is measured as the 

distance from beginning of the continuous movement to the clicked endpoint. 

However, ideally A should be the distance from starting position to the center
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of the target. Due to human movement variance, the clicked endpoint could not 

be exactly at the target center. In fact, it has been found in previous works [29,39, 

47,70,106,114] that distance of the endpoint to the target center forms a normal 

distribution. Therefore, in our measurement, inaccuracy on the true distance A 

occurs especially when clicking on long hyperlinks. Figure 4.15 shows that, when 

clicking on a very long link, a user could either take path #1 to the left of the target 

center, thus rendering an underestimated distance; or he/she could take path #2, 

resulting in an overestimated distance. Overall, we believe that the inaccuracy on 

distance in our experiment is minor, since a typical webpage should be dominated 

by short links which only contain one or two words.

In particular, when link length is much less than the true distance to target 

center, the deviation of our measurement to the true distance is negligible. We 

denote D as the horizontal width of the target link, A as the true distance to target 

center, they are illustrated in Figure 4.15. For a certain actual click action, we 

denote the distance from the clicked endpoint to target center as d. Angle 6 is 

angle between the line of true distance and the line of actual path taken. The 

relative error of measured distance A' to the true distance A is

SA =  M _ £ l .  (4.5)

From the law of cosines, we have

A' = VA2 + (P -2A-d-cos6.  (4.6)
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User Gender a [ms] b [ms/bits]
Correlation

MAPE
Movement Categories

Device& Slow Medium Fast
#6 Male 27.70 226.34 0.925 30.80% 32.91% 16.08% 51.01% Mouse
#6 Male 121.04 97.32 0.851 41.65% 41.64% 12.79% 45.57% Touchpad

# 8 Female
.

61.57 167.51 0.931 *39.98% 40.56% 17.46% 41.97% Mouse
#8 Female 108.64 65.83 0.678 49.01% 38.59% 10.68% 50.73% Touchpad

Table 4.2: Fitts' Law Related Parameters for Users of Both Mouse and Touchpad

Therefore,

(M )2 =
A2 + (A2 + d2 -  2A ■ d ■ cos0) 

A2
2Ay/A2 + d? — 2A ■ d ■ cos 6

A2

=  2 +  ( j )2 ~ 2 ' J ' cos9

- 2 \ / l  +  ( j ) 2 - 2 - j - c o s e . (4.7)

In case of clicking on short links with a horizontal length D, we assume D <  

A. For a successful click, we have d < D/2. Thus D <  A means d «  A, or 

d/A -> 0. Define e =  d/A, Eq. 4.7 becomes

(£/t)2 = 2 — 2V T+^2~^2e^~cos6 + e2 — 2e • cos0. (4.8)

As we can see, since || cos0|| < 1, when e -> 0, which corresponds to short links, 

e • cos 6 -» 0 as well. Therefore, the relative error of our distance measure 5A -> 0.

4.4.2 Guidelines on Applying Fitts’ Model to Web Browsing

From our experiments, we learn that the way one can apply Fitts’ law to web 

browsing is different from what previous works describe for restricted laboratory 

settings. Therefore, we summarize a suggested guideline on how to apply Fitts’ 

law model in web browsing as follows:
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1. Data Collection: Besides x-y coordinates and timestamps, target types 

must be recorded as well, as it is needed to measure the target width.

2. Clustering and Averaging: Sort all records with increasing IDs, choose a 

proper cluster size S (our results show that S > 40 yields optimal results), 

then average every S raw data.

3. Linear Regression: Plot the averaged ID  and M T  pairs, fit them in a 

straight line, and calculate parameters a  and b. Note that they are user- and 

environment-specific.

4.4.3 Possible Extension to Touchscreens?

Touch screen in tablets and mobile phones has become an increasingly popular 

device for web browsing. However, with a touch screen, to reach for a link on a 

webpage, users usually slide and tap. This is very different from using mice and 

touchpad, which always involves continuous cursor movements before clicking. 

Although one can do a deliberately structured Fitts’ law test as in [33], we believe 

that there is no regular pointing behavior under natural browsing in a mobile de­

vice or tablet. And even in [33]’s Fitts’ law results [34], we can see that the data 

points with an iPhone are very noisy, and thus lack a linear pattern, especially 

compared to those with mice and touchpad.
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4.4.4 User Profiling by Fitts’ Parameters

As we mentioned in Section 1, the two constants a and b in Fitts’ law formula 

Eq. 1.1 are affected by both the user and the environment factors. Those two 

constants, along with other Fitts law related parameters, such as correlation co­

efficient, mean absolute percentage error (MAPE), percentage of slow, medium, 

and fast movements, how do they differ from user to user under the same en­

vironment? And how are they affected by different environments given a same 

user? If the parameters are more affected by users than by environmental fac­

tors, then it would be possible to predict which user group an online user belongs 

to. For example, it may be possible to make a good guess about if the user online 

is male or female, right-handed or left-handed, age ranges, or even education 

backgrounds. This could be very useful for online authentication because for a 

certain website, such as online banking or student account, the registered users 

are relatively stable. Here we present preliminary results from our controlled data 

set, on how the parameters are affected by different users and environments.

Table 4.1 shows Fitts’ law related parameters for all 5 users using mice. There 

are 3 male users and 2 female users. We can see that, with respect to dividing 

user groups, male vs. female as an example, there is no strong indication in any 

of the parameters for gender differences. For example, female user #5 is very 

similar to male user #1 in all parameters, except for parameter a; but a alone 

cannot reflect gender differences as female user #4’s a is very close to that of 

male user #1.

Which of the two factors, user or environment, plays a major role in affecting 

Fitts’ law related parameters? To answer this question, we look at the mouse and 

touchpad data of the same user. Table 4.2 shows the parameters for 3 users with 

both mouse and touchpad data. In the table, we can see the diverging effects of 

changing environments for different users. For example, both user #6 and #8’s
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parameters are greatly affected by changing from a mouse to touchpad, while 

user #7’ parameters are relatively stable regardless of using mouse or touchpad.

Overall, from the preliminary results, there is no definite line in dividing dif­

ferent user groups; and the changing of environments has different effects on 

different users. However, the size of our controlled data set, 10, may be too 

small to draw a definite conclusion. Moreover, the parameters we explored can­

not capture all characteristics of human mouse movements in web browsing. It 

is possible that other kinetic-related metrics are able to differentiate user groups. 

We leave this for future works.

4.5 Conclusion and Future Work

This chapter examined the Fitts’ model in the context of natural web browsing. 

Mouse movement data from over 1,000 real-world Internet users was collected 

via Javascript embedded on a web forum, and the analysis showed a linear rela­

tionship between the ID  and M T  of the task with over 98% correlation, suggest­

ing strong evidence that Fitts’ law extends well to web browsing behavior.

In addition, we evaluated the deviation in raw movement time from Fitts’ pre­

dicted M T, especially the error model proposed by previous works. From the raw 

data, there exists a large deviation from Fitts’ predicted values, with a 46.40% 

mean absolute deviation. We further divided all movements into three categories 

by the Fitts’ predicted MT: slow, medium, and fast movements. And fast move­

ments were shown to have an error model different from the other two categories, 

which indicates their open-looped nature.

Moreover, this chapter examined the effect of differing pointing devices on the 

Fitts model. Pointing data was collected from 10 people variously using physical 

mice and laptop touch pads. The analysis showed that both devices had a strong 

linear relationship between ID  and M T  (over 98% correlation in both cases), and
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that the results were nearly identical at low ID  values, yet diverged slightly at high 

ID  values.

Finally, this chapter discussed other Fitts’ Law considerations, namely the 

standard deviation in Fitts’ Law calculations. The forum data set was analyzed 

and the standard deviation of M T  plotted against ID . The result showed that 

Fitts’ Law also describes a linear relationship between ID  and standard devia­

tion, implying that variance in time to point increases as ID  increases.

There are a number of possible directions for our future work. We plan to 

conduct a large-scale user data collection, with their demographic information 

known. Then, we plan to further verify the possibility of classifying users into 

different groups (gender, age, handedness, etc) based on Fitts’ law parameters. 

We also plan to explore the possibility to detect web bots by checking if the mouse 

movement pattern follows Fitts’ law.
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5 Conclusion and Future Work

The protection of an end user’ identity and privacy is always the core mission 

of security research. In recent years, it has become increasingly critical due to 

prevalence of online media and mobile applications. In this dissertation, we have 

focused on user re-authentication by exploiting user behavior patterns and mod­

eling. The first two projects are dedicated to user verification based on mouse 

movement patterns and touchscreen tapping behaviors, respectively, and the 

third one is on modeling web browsing behaviors from end users by Fitts’ Law.

For future works, we plan to pursue in two directions. Firstly, we intend to 

exploit multi-finger tappings (as opposed to single-finger tappings in Chapter 3) 

for smartphone user verification. Secondly, we will conduct another research on 

analyzing privacy issues in Amazon wish list [4]. The rest of this chapter will detail 

research plans regarding these two topics specifically.

Multi-Finger Tappings for Smartphone User Verifica­

tion

As demonstrated in Chapter 3, we have seen how PIN entering process can 

contribute to user verification by using single-finger tappings. In this section, we 

propose to extend the work in Chapter 3 by further exploiting multi-finger\app\ngs. 

For the purpose of smartphone user verification, enabling multi-finger tappings 

has the following benefits.
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First, it leads to increased key space1 for entering a smartphone PIN. Under 

a single-finger tapping scheme, given a PIN number, a user essentially has only 

one way of entering his/her PIN (i.e., tapping every digit with one designated fin­

ger, e.g., index finger). In contrast, multi-finger tapping adds the possibility of 

using different fingers for entering the digits within one passcode. Those differ­

ent finger combinations clearly form distinguishable patterns in terms of various 

sensor-related features (such as contact size, tapping pressure, and timings). 

For this very reason, a successful impostor also needs to know the specific finger 

combination associated with the target user. As an example to illustrate the key 

space under the multi-finger tapping scheme, the number of ways for entering a 

4-digit passcode can be calculated as follows.

•  Number of ways if using four different fingers = P54 x (P44 + C4(P3 + P2) + 

C l x PjJ + l) = 9,720;

•  Number of ways if using three different fingers = C\ x P53 x (P44 + P33 + C\ x

C\ x P3 + C\ x P22 + C\ x P2) = 22,320;

•  Number of ways if using two different fingers = C\ x P52 x (P44 + C\ x P33) + 

C\ x P2 x (P4 + C\ x C\ x P3 + C\ x P2) = 9,600;

• Number of ways if using one finger = C\ x P44 =  120.

The final key space associated with a fixed 4-digit passcode, therefore, is 9,720 +  

22,320 +  9,600 + 120 =  41,760, which is more than four times larger than that 

using single-finger tappings.

Second, the multi-finger tapping scheme further increases the security level 

by exploiting more personal traits than the single-finger scheme. Specifically, 

it grasps the uniqueness of all fingers’ size and flexibility from the target user, 

instead of just one designated finger. For example, it would be much harder for

’ Here key space is defined as the number of distinguishable ways of entering a given PIN.
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an impostor to regenerate a user’s behavior involving with five different fingers 

than just one finger. Thus, multi-finger tappings render a richer personal tapping 

profile for the target user.

However, there might be hot-spot ways on entering a certain passcode. For 

example, to enter 1-2-3-4, people would probably prefer to user thumb-index- 

middle-fourth fingers, rather than out-of-order fingers. We will explore this issue 

in the future.

Privacy Issues in Amazon Wishlist

As social media has become increasingly more popular in recent days, it is com­

mon for users to reveal their personal information and preferences publicly on­

line [43]. One such example is the Amazon wish list [4], which is an online gift 

registry. It allows users to add wished merchandise and then spread the link via 

emails or social networks. Because Amazon wish list is by nature to be shared 

with others, it is in very large extent can be seen by all online visitors2. In this 

project, we plan to evaluate and analyze user privacy leaks from publicly shared 

Amazon wish lists.

For an initial assessment, we have collected data from 46,000 users' Amazon 

wish lists using Java with support of jsoup library 1.7.2 [59]. Among all users, 

our data indicate that 40.4% of the users are publicly sharing birthday informa­

tion, 33.6% are sharing location information, and 24.7% are sharing both pieces 

of information. Considering the the total number of active Amazon accounts is 

currently 237 million [99], we can see a large number of population expose their 

personal information {name, home town, birthday}, which are associated with 

most commonly used items in security questions for password recovery. Note 

that although fake profiles are possible, it is not likely to happen often because:

2except that users explicitly change its setting to “private”.
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(1) from a user’s standpoint, the inclusion of additional personal information is to 

have his/her friends accurately search for the wish list in the first place; (2) those 

additional information are optional to enter. Therefore, we believe the above sta­

tistical numbers are of highly reliable.

For the next step, we plan to study the following aspects in data analysis and 

user preference mining:

•  Clustering into user groups based on more specific content in their wish lists 

like book titles or music categories.

•  Monitoring the temporal dynamics of a user’s wish list throughout the year 

during four calendar-based seasons and holidays seasons, including Thanks­

giving, Christmas/New Year, Valentine’s Day, and Mother’s Day, etc.

•  To assess the risk of privacy leak from Amazon wish list, we plan to measure 

the success rate of inferring critical pieces of demographic information from 

users’ wish lists alone. The personal information of interest includes, but 

not limited to, age range, education background, marital status, and children 

(their age, gender, etc.), where the ground truth can be obtained from users 

who reveal that information in “About Me”.
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