
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2014

Exploiting behavioral biometrics for user security enhancements Exploiting behavioral biometrics for user security enhancements

Nan Zheng
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zheng, Nan, "Exploiting behavioral biometrics for user security enhancements" (2014). Dissertations,
Theses, and Masters Projects. Paper 1539623640.
https://dx.doi.org/doi:10.21220/s2-3jya-ts34

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623640&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623640&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-3jya-ts34
mailto:scholarworks@wm.edu

EXPLOITING BEHAVIORAL BIOMETRICS FOR USER SECURITY
ENHANCEMENTS

Nan Zheng

Xianyang, Shaanxi, China

Master of Science, University of Tennessee Knoxville, 2009

Bachelor of Science, University of Science and Techlology of China, 2006

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May, 2014

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Approved by the Committee, May, 2014

Committee Chair
Associate Professor Haining Wang, Computer Science

The College of William & Mary

Professor Weizhen Mao, Computer Science
The College of William & Mary

Professor Evgenia Smimi, Computer Science
The College of William & Mary

Associate Professor Gang Zhou; Computer Science
The College of William & Mary

Dr. Kun Bai
IBM T.J. Watson Research Center

COMPLIANCE PAGE

Research approved by

Protection of Human Subject Committee

Protocol number(s): PHSC-2010-05-19-6734-hxwan3

Date(s) of approval: 05/21/2010

ABSTRACT

As online business has been very popular in the past decade, the tasks of
providing user authentication and verification have become more important than
before to protect user sensitive information from malicious hands. The most
common approach to user authentication and verification is the use of password.
However, the dilemma users facing in traditional passwords becomes more and
more evident: users tend to choose easy-to-remember passwords, which are
often weak passwords that are easy to crack. Meanwhile, behavioral biometrics
have promising potentials in meeting both security and usability demands, since
they authenticate users by "who you are", instead of "what you have". In this
dissertation, we first develop two such user verification applications based on
behavioral biometrics: the first one is via mouse movements, and the second via
tapping behaviors on smartphones: then we focus on modeling user web
browsing behaviors by Fitts' Law.

Specifically, we develop a user verification system by exploiting the uniqueness
of people's mouse movements. The key feature of our system lies in using much
more fine-grained (point-by-point) angle-based metrics of mouse movements for
user verification. These new metrics are relatively unique from person to person
and independent of the computing platform. We conduct a series of experiments
to show that the proposed system can verify a user in an accurate and timely
manner, and induced system overhead is minor. Similar to mouse movements,
the tapping behaviors of smartphone users on touchscreen also vary from
person to person. We propose a non-intrusive user verification mechanism to
substantiate whether an authenticating user is the true owner of the smartphone
or an impostor who happens to know the passcode. The effectiveness of the
proposed approach is validated through real experiments. To further understand
user pointing behaviors, we attempt to stress-test Fitts' law in the "wild", namely,
under natural web browsing environments, instead of restricted laboratory
settings in previous studies. Our analysis shows that, while the averaged
pointing times follow Fitts' law very well, there is considerable deviations from
Fitts' law. We observe that, in natural browsing, a fast movement has a different
error model from the other two movements. Therefore, a complete profiling on
user pointing performance should be done in more details, for example,
constructing different error models for slow and fast movements. As future
works, we plan to exploit multiple-finger tappings for smartphone user
verification, and evaluate user privacy issues in Amazon wish list.

TABLE OF CONTENTS

Acknowledgements ii

Dedications iii

List of Tables iv

List of Figures v

Chapter 1. Introduction 1

Chapter 2. An Efficient User Verification System via Mouse
Movements 10

Chapter 3. User Verification on Smartphones via Tapping
Behaviors 42

Chapter 4. Exploring Fitts' Law in Web Browsing 72

Chapter 5. Conclusion and Future Work 99

Bibliography 103

i

ACKNOWLEDGEMENTS

My first and foremost appreciation goes to my Ph.D. advisor, Dr. Haining Wang,
for his excellent guidance and great inspirations. Dr. Wang’s research insights
and unique approach of solving research problems will definitely make a far-
reaching impact to my career. I especially thank Dr. Wang for his patience and
confidence in me.

In addition, I would like to thank my fellow group members and colleagues at the
College of William & Mary, including but not limited to Yubao Zhang, Dachuan
Liu, Haitao Xu, Zhang Xu, Aaron Paloski, Jing Jin, Steven Gianvecchio, Xin
Ruan, Aaron Koehl, Bo Dong, Lingfei Wu, Xin Qi and David T. Nguyen for their
great support, advices, and discussions during the course of my doctoral pursuit.

I would also like to thank my collaborators Dr. Kun Bai and Dr. Hai Huang at IBM
T.J. Watson Research Center for their indispensable efforts and influences on
my career path. Also thanks to Dr. Ting He, Dr. Kanat Tangwongsan and Dr.
Kang-Won Lee at IBM T.J. Watson Research Center who have patiently
mentored and inspired me during my internship.

In addition, I want to thank my doctoral committee members for their valuable
directions.

My gratitude also extends to all the other faculty members, staff, fellow graduate
students, who helped make my five years at the College of William & Mary a
great time.

Finally, my deepest thanks go to my parents, whose unconditional love and
support inspired me to complete my journey of doctoral study even during the
most difficult periods.

To my parents

iii

LIST OF TABLES

2.1 Setting Details 20

2.2 Variation of FRR and FAR with Different Number of Clicks in
One Block 29

2.3 Comparison with Existing Works 37

3.1 Collected Data 45

3.2 Features of Touchscreen Tapping Behaviors 48

3.3 User Verification Accuracies 61

4.1 Fitts’ Law Related Parameters for Users of Mouse 92

4.2 Fitts’ Law Related Parameters for Users of Both Mouse and
Touchpad 94

iv

LIST OF FIGURES

2.1 Illustration of angle based metrics

2.2 Direction Angle metric plotted for two different users on
two different machines each

2.3 Angle of Curvature metric plotted for two different users
on two different machines each

2.4 Curvature Distance metric plotted for two different users
on two different machines each

2.5 Speed metric plotted for two different users under two
different environments each

2.6 Pause-and-click metric plotted for two different users
undertow different environments each

2.7 Distances from one user’s curvature angle distribution to
those of others, as well as to itself in different settings

2.8 System Architecture

2.9 SVM hyperplane in two dimensional feature space [36]

2.10 Variation of FRR and FAR with the number of clicks. Error
bars indicate standard deviation.

2.11 Variation of FRR and FAR with threshold

2.12 Variation of FRR and FAR with majority votes

2.13 FRR and FAR for one user profiled on one platform and
tested on another platform

2.14 ROC curves with and without partial movements

2.15 The entire angle range 360° is divided into eight sections.
The eight divisions of angle, each with a resolution of 45°,
are labeled with numbers 1 to 8. For each section the

14

16

16

17

18

18

19

21

23

27

28

29

30

32

V

average values of metrics are calculated as features, in
order to differentiate between mouse and touchpad data.

16 The classification accuracy in differentiating mouse and
touchpad data, as a function of increasing number of
mouse events per block.

1 Screen layout of our data collection application, and the
two-hand typing action

2 An illustration of two-feature space of a target user and
many others. Xi and X2 are the two features. The dashed
lines define the boundary of the target user’s behavior.
Because the target user’s behavior is limited to a
concentrated area, the boundary blocks the majority of
potential impostors.

3 Timing of tapping on the smartphone from three different
users, shown in three vertical panels. Each user typed 20
times of the number string “3244”. The solid dots
represent key-press time, and the open dots are key-
release time. Different colors represent the timestamps of
different digits.

4 User’s tapping pressure on smartphone touchscreen,
while entering an 8-digit PIN 1-2-5-9-7-3-8-4. Each figure
shows pressure readings on a 3x3 smartphone number
pad. Darker color indicates a larger tapping pressure.
Note that number “6” has no pressure because its is not in
the PIN. Figures in the same row are from a same user
while typing the PIN the three times.

5 Distribution of dissimilarity score of typing 3-2-4-4 from a
target user's template, to both the target user itself and
other 52 users.

6 Distribution of dissimilarity score of typing the 8-digit PIN
1-2-5-9-7-3-8-4 from a target user's template, to both the
target user itself and other users.

3.7 Distribution of dissimilarity score of typing another 8-digit
PIN 1-2-5-9-8-4-1-6 from a target user’s template, to both
the target user itself and other users.

3.8 System Architecture

3.9 An illustration of tradeoff between FRR and FAR by tuning
the threshold [55]

3.10 Variation of average EER with number of user actions in
one-class training for five PIN combinations.

3.11 Variation of FRR and FAR with the value of threshold for
3-2-4-4 and the two 8-digit PINs for one target user

3.12 Comparison of performance from each feature set in one-
class learning, as well as when they are combined
together

3.13 Variation of Accuracies with number of users in training
and testing

3.14 Trade-off between FRR and FAR in typing three 4-digit
PINs: 1-1-1-1, 3-2-4-4, and 5-5-5-5

3.15 Comparison of accuracies between one- and two-class
learning. Lengths of error bars show the standard
deviation of EER over users.

3.16 Dissimilarity scores from one tapping position (i.e., one-
handed while sitting) to the other two tapping positions of
a same user. Upper and lower panels are for the two
different users, respectively.

3.17 Effect of mimic attack shown in degree of dissimilarity
from the target user. Subfigures, from left to right,
correspond to all features considered, and each individual
feature set (acceleration, pressure, size, and time). There
are two mimic “imposters ”, and 10 trials before and after
their observations on the target user.

54

55

59

60

60

61

62

63

63

65

67

vii

4.1 Step-wise movement towards target [35] 74

4.2 Layout of the webpage for data collection. Text links are
highlighted by red boxes. 78

4.3 ID vs. Mean Time plotted for the forum users’ data set.
The linear correlation is over 98%. Every data point in the
figure is averaged over 180 raw data points. 81

4.4 Probability distribution of £%, the relative deviation from
Fitts’ prediction, from raw times of natural web browsing.
Histogram bars denote the portion of £% with values in the
corresponding block. Below the histogram is the scattering
of raw data, where the location of dense area (between -
50% and +50%) indicates the most probable values of £%. 82

4.5 Mean absolute percentage error (MAPE) drops
exponentially with the increase of cluster size. A cluster
size S means every S raw data are clustered and
averaged. Note that above 40 actions per cluster, MAPE
stabilizes at around 10%. 84

4.6 CDF for the effective width We for all movements and for
the fast movements. Note that both distributions are not
Gaussian, as were assumed in prior works. 85

4.7 CDF for the effective width We for the medium and slow
movements. 87

4.8 ID vs. Mean Time plotted for all collected physical mouse
traces and all touchpad traces. Each data point in the
figure is a result of averaging 180 raw data records. Note
that the linear correlation is similar for both devices (over
98% in both cases). 87

4.9 ID vs. Mean Time plotted for User 1 ’s physical mouse
trace and touchpad mouse trace. Each data point in the
figure is a result of averaging 10 raw data records. 88

viii

4.10 ID vs. Mean Time plotted for User 2’s physical mouse
trace and touchpad mouse trace. Each data point in the
figure is a result of averaging 10 raw data records. 89

4.11 ID vs. Mean Time plotted for User 3’s physical mouse
trace and touchpad trace #1. Each data point in the figure
is a result of averaging 10 raw data records. 90

4.12 ID vs. Mean Time plotted for User 3’s physical mouse
trace and touchpad trace #2. Each data point in the figure
is a result of averaging 10 raw data records. 91

4.13 ID vs. Mean Time plotted for User 3’s touchpad traces #1
and #2. Each data point in the figure is a result of
averaging 10 raw data records. 91

4.14 ID vs. Standard Deviation of Fitts’ law calculation for the
forum users’ data set. Note the linear relationship. 92

4.15 Click inaccuracy 95

ix

1 Introduction

User security, implied by its name, refers to security that is both usable and trust

worthy to end-users. Traditionally, security experts are primarily concerned with

security, i.e., preventing malicious parties from damaging or peeking the user sen

sitive information. However, as the weakest link in the security chain, end-users

tend to favor usability over security in using security-related applications. It is up

to end-users, who are not so tech-sawy, to decide whether to install/uninstall a

security-related software and the choice of passwords or passcodes. More often,

there is a discrepancy between traditional security goals and end-user interests.

Taking access control as an example, security experts are more concerned with

blocking malicious hackers; while end-users concern more on easy to remem

ber/use and not locking themselves out.

Researchers have recently come to an agreement that, in making a security

system usable, one needs to put usability first in the design cycle. In fact, CRA

(Computing Research Association) lists one of the grand challenges as to “give

end-users security controls they can understand and privacy they can control

for the dynamic, pervasive computing environments of the future” [27]. In this

dissertation, we present our efforts in designing two user verification systems,

with the goal of enhancing user security, and in exploring Fitts’ law—one of the

fundamental law in HCI (Human-Computer Interaction)—to model user behaviors

of web browsing. For our future work, we plan to explore two directions: using

multi-finger tappings for increased security in smartphone user verification, and

1

evaluating privacy risks in publicly accessible Amazon wish list.

1.1 Mouse Dynamics

In today’s Internet-centered world, the tasks of user authentication and verifica

tion have become more important than ever before [3,21,76,88]. For highly sen

sitive systems such as online banking, it is crucial to secure users’ accounts and

protect their assets from malicious hands. Even in less critical systems such as

desktop machines in a computing laboratory, online forums, or social networks,

a hijacked session can still be misused to spread viruses or post spam, possibly

damaging a user’s reputation and other systems. The most common approach

to securing access to systems is the use of a password [23,41]. Unfortunately,

passwords suffer from two serious problems: password cracking and password

theft [90,115]. Once a password is compromised, an adversary can easily abuse

a victim’s account. Thus, there is a great demand to quickly and accurately verify

that the person controlling a given user’s account is who the user claims to be,

termed re-authentication [88].

Existing user verification and re-authentication methods require human in

volvement, such as providing secret answers to agreed-upon questions. Unfor

tunately, they only provide one-time verification, and the verified users are still

vulnerable to both session hijacking and the divulging of the secret information.

To achieve a timely response to an account breach, more frequent user verifica

tion is needed. However, frequent verification must be passive and transparent

to users, as continually requiring a user’s involvement for re-authentication is too

obtrusive and inconvenient to be acceptable.

In the first project, we propose a biometric-based approach to verifying users

based on passively observable mouse movement behaviors. In general, in order

for a re-authentication system to be practical, it must have the following features:

2

• Accuracy. Not only must the system accurately identify an impostor, it must

also have the probability of rejecting a true user close to zero, to avoid

inconvenience to true users.

• Quick response. The system should make a quick verification decision. In

other words, it should be able to distinguish a user in a timely manner.

• Difficult to forge. Even if a user’s profile template is known by an impostor,

it will be very hard to mimic the normal biometric behaviors in a consistent

manner and then evade the verification system.

Our new approach meets all of these challenges, delivering an accurate and

quick verification based on biometrics which are difficult to forge. The basic work

ing mechanism of our approach is to passively monitor the mouse movements

of a user, extract angle-based metrics, and then use Support Vector Machines

(SVMs) for accurate user verification. The key feature of our approach is to ex

ploit the point-by-point angle-based metrics of mouse movements, which are rel

atively unique from person to person and independent of the computing platform,

for user verification.

Current biometric approaches are limited in applicability: physiological biomet

rics, such as fingerprints and retinal scans, provide accurate one-time authentica

tion but require specialized hardware which may be expensive or unavailable on

all users’ machines. On the other hand, behavioral biometrics such as keystroke

and mouse dynamics hold promise, because they can be obtained from com

mon user interface (Ul) devices that nearly every user can be assumed to own.

Compared with keystroke dynamics [64,77,84], mouse dynamics has its own ad

vantage for two reasons. First, keystroke monitoring can record sensitive user

credentials like usernames and passwords, raising much more serious privacy

concerns than mouse movement monitoring. Second, keyboard is much more

complex than mouse in structure, and thus keystroke dynamics are more easily

3

affected by different kinds of keyboards in terms of shape, size, and layout.

However, to date the existing mouse-based user verification approaches have

either resulted in unacceptably low accuracy or have required an unacceptably

long amount of time to reach a decision, making them unsuitable for online re

authentication. In contrast to previous research, our approach introduces a novel

way—point-by-point angle-based metrics—to characterize users’ mouse move

ments, which significantly reduces verification time while keeping high accuracy.

We perform a measurement-based study, derived from 30 controllable users

and a corpus of more than 1,000 real users in the field. Based on these two sets

of mouse movement data, we evaluate the effectiveness of the proposed system

through a series of experiments, using the set of angle-based metrics specifically

chosen for being both platform-independent and widely variant from user to user.

In summary, the major contributions of this work include:

• We model behavioral biometrics using mouse dynamics, and develop an

efficient user verification system. It achieves high accuracy and significantly

outperforms existing systems in terms of verification time.

• We propose a novel measurement strategy involving a carefully chosen set

of angle-based metrics, which is relatively independent of the operating en

vironment and capable of uniquely identifying individual users.

• We conduct an experiment involving sessions from over 1,000 unique users,

which is able to re-authenticate a user within just a few clicks with a high

accuracy. This promising result could lead to a practical user verification

system, suitable for online deployment in the future.

4

1.2 Smartphone User Verification via Tapping Be

haviors

Smartphones have become ubiquitous computing platforms allowing users any

time access to the Internet and many online services. On one hand, as a per

sonal device, a smartphone contains important private information, such as text

messages, always-logged-in emails, and contact list. On the other hand, as a

portable device, a smartphone is much easier to get lost or stolen than conven

tional computing platforms. Therefore, to prevent the private information stored

in smartphones from falling into the hands of adversaries, user authentication

mechanisms have been integrated into mobile OSes like Android and iOS.

Due to having a much smaller screen and keyboard on a smartphone than

the traditional user input/output devices, PIN-based and pattern-based passcode

systems have been widely used in smartphones for user authentication. However,

many people tend to choose weak passcodes for ease of memorization. A 2011

survey on iPhone 4-digit passcode reveals that the ten most popular passcodes

represent 15% of all 204,508 passcodes and the top three are 1234, 0000, and

2580 [5]. Moreover, recent studies show that an attacker can detect the location

of screen taps on smartphones based on accelerometer and gyroscope readings

and then derive the letters or numbers on the screen [14,75,82,109]. An attacker

could even exploit the oily residues left on the screen of a smartphone to derive

the passcode [7]. Therefore, it is highly desirable to enhance the smartphone’s

user authentication with a non-intrusive user verification mechanism, which is

user-transparent and is able to further verify if the successfully logged-in user is

the true owner of a smartphone.

In the second project, we explore the feasibility of utilizing user tapping be

haviors for user verification in a passcode-enabled smartphone. The rationale

5

behind our work is that individual human users have their own unique behavioral

patterns while tapping on the touch screen of a smartphone. In other words, you

are how you touch on the screen, just like you are how you walk on the street.

The rich variety of sensors equipped with a smartphone including accelerometer,

gyroscope, and touch screen sensors, make it possible to accurately character

ize an individual user’s tapping behaviors in a fine-grained fashion. With over 80

smartphone users participated in our study, we quantify the user tapping behav

iors in four different aspects: acceleration, pressure, size, and time. Based on

the behavioral metrics extracted from these four features, we apply the one-class

learning technique for building an accurate classifier, which is the core of our user

verification system.

We evaluate the effectiveness of our system through a series of experiments

using the empirical data of both 4-digit and 8-digit PINs. In terms of accuracy,

our approach is able to classify the legitimate user and impostors with averaged

equal error rates of down to 3.65% for 4-digit PINs. For 8-digit PINs, we achieve

even lower equal error rates of down to 3.21%. Overall, our verification system

can significantly enhance the security of a smartphone by accurately identify

ing impostors. Especially for practical use, our tapping-behavior-based approach

is user-transparent and the usability of traditional passcodes on a smartphone

remains intact. As our approach is non-intrusive and does not need additional

hardware support from smartphones, it can be seamlessly integrated with the

existing passcode-based authentication systems.

1.3 Exploring Fitts’ Law in Web Browsing

Web browsing is mainly driven by target acquisition - the movement of a pointing

device, such as a mouse, touchpad, and stylus, to an on-screen target. The ability

to quantify the way these pointing actions are performed has been studied heavily

6

before. The previous research works have helped us better understand the effect

human motor control has on pointing actions, with applications ranging from the

design of more efficient graphical user interfaces (GUIs) [12], to the creation of

accurate pointing devices [42], and human biometrics security [88,116].

Fitts’ law [39] is a classic and well-studied law, which quantifies pointing ac

tions in terms of the size, distance, and time to reach the target. The most com

mon formulation of Fitts’ law comes from [70] and is referred to as the “Shannon

formulation”:

In Eq. 1.1, the log term is known as the index of difficulty {ID). Fitts’ law describes

a linear relationship between the mean time to complete the pointing action (MT)

and the index of difficulty {ID) of the pointing task, which includes the distance to

the target {A) and the width of the target in the direction of movement {W). The

parameters a and b are environment- and user-specific.

This law has been one of the most widely used and most well-respected for

mulas in human-computer interaction, but it represents an idealized view of point

ing actions. Nearly all of the experimental results currently in the literature re

garding Fitts’ law have been performed in extremely clinical settings - on a blank

background, a single target square or circle appears, and a user must move the

cursor from a starting position to the target as quickly as possible. This style of

pointing, however, is not typical of real-world GUI applications. Typically, there

are many potential targets on the screen at once. The environment is full of dis

tractions, instead of a blank white screen, and the user spends time considering

his or her next move, instead of pointing as quickly as possible. All of these envi

ronmental factors might affect the amount of time it takes for a user to complete a

pointing action. There is very little research detailing how well Fitts’ law applies,

if at all, in such scenarios.

Moreover, Fitts’ law is not merely a single equation in a vacuum. The law de-

(1 .1)

7

scribes a linear model of human pointing actions, and a model cannot be defined

by its mean alone. Other side metrics such as the standard deviation or variance

of the model should also be considered when discussing Fitts’ law, but the major

ity of the current literature seems to focus exclusively on the mean as presented

by the common formulation.

This work attempts to answer the question: how well does Fitts’ law truly

model real human pointing tasks in web browsing? We examine Fitts’ law in a

natural web browsing environment to determine its validity outside of a structured

experimental setting. This is accomplished through a data set collected from

1,047 users’ natural mouse traces on a real-world website. The major contribu

tions of this work are summarized as follows:

• an application of the Fitts’ law formula to pointing actions in a natural web

browsing environment, involving a large-scale data collection from 1,047

real-world users on an Internet forum (Section 4.2.1), to assess Fitts’ law’s

applicability to typical GUIs outside of an experimental setting (Section 4.3.1);

• an observation that in web browsing, fast movements have a different error

model from slow movements, which deviates from previous laboratory stud

ies. We speculate that this is partially due to the open-loop nature of fast

movements (Section 4.3.2);

• a comparison of Fitts’ law results for natural browsing using two different

pointing devices - physical mouse and laptop touchpad - to determine

whether the choice of pointing device has an effect on the linear relationship

described by Fitts’ law (Section 4.3.3);

• an analysis of the standard deviation of Fitts’ law calculations of mean point

ing time, to better understand the variance present in the Fitts model (Sec

tion 4.3.4).

8

1.4 Future Works

We leave two open topics for our future work. First, we are going to extend the

user verification on smartphones to multiple-finger tappings, which promisingly

provides higher level of robustness and security. Second, we plan to investigate

various privacy issues from publicly accessible Amazon wish lists. The detailed

research plans are described in Chapter 5.

1.5 Organization

The remainder of this dissertation is structured as follows. Chapter 2 presents

our first work in developing an efficient user verification system via mouse move

ments, including the detailed data collection, measurement and evaluation pro

cess. Chapter 3 presents our second work in verifying smartphone users via their

tapping behaviors, where a series of experiments are conducted to validate its ef

ficacy in reality. Chapter 4 describes our third project in exploring Fitts’ law in web

browsing, which is for further understanding people’s behaviors when interacting

with computers. Chapter 5 concludes and proposes our future research plans

on exploring multi-finger tappings for smartphone user verification and privacy

issues in Amazon wish list.

9

2 An Efficient User Verification Sys

tem via Mouse Movements

In this chapter, we present our work on verifying users via their mouse move

ments, which outperforms previous works in terms of both efficiency and accu

racy. The chapter is structured as follows. Section 2.1 reviews the background

and related work in the area of mouse dynamics. Section 2.2 describes our data

collection and measurement, including our choice of angle-based metrics over

more traditional metrics. Section 2.3 details the proposed classifier for user ver

ification. Section 2.4 presents our experimental design and results. Section 2.5

discusses issues which arise from the details of our approach, and Section 2.6

concludes.

2.1 Background and Related Work

The underlying principle of biometric-based user authentication is centered on

“who you are”. This is very different from conventional user authentication ap

proaches, which are mainly based on either “what you have" or “what you know”.

Unfortunately, a physical object such as a key or an ID card can be lost or stolen.

Similarly, a memorized password could be forgotten or divulged to malicious

users. Conversely, a biometric-based approach relies on inherent and unique

characteristics of a human user being authenticated. The biometrics can never

10

be lost or forgotten, nor can another user easily steal or acquire them. This makes

biometrics very attractive for user authentication.

Biometrics are categorized as either physiological or behavioral [110]. Physio

logical biometrics, like fingerprint and facial recognition, have attracted consider

able attention in research [49,72]. The downside of these biometrics is that they

need specialized hardware, which can be problematic for wide deployment. For

user authentication over the Internet, one cannot always rely on the existence

of hardware at the client side. In contrast, behavioral biometrics using human-

computer interaction (HCI) can record data from common input devices, such as

keyboards and mice, providing user authentication in an accessible and conve

nient manner.

Behavioral biometrics first gained popularity with keystroke dynamics with

Monrose et al.’s work on password hardening in 1999 [76]. Later on, Ahmed

and Traore [2] proposed an approach combining keystroke dynamics with mouse

dynamics. Mouse dynamics for re-authentication have been previously studied as

a standalone biometric by Pusara and Brodley [88]. Unfortunately, their study is

inconclusive with only eleven users involved, prompting the authors to conclude

that mouse biometrics are insufficient for user re-authentication. Our study re

lies on an improved verification methodology and far more users, leading us to

reverse their hypothesis.

In Ahmed et al.’s work [2,3,78], while achieving very high accuracy, the number

of mouse actions needed to verify a user’s identity1 is too high to be practical.

Specifically, their experiment requires as many as 2,000 aggregate mouse actions

before a user can be recognized, and is not practical for real-time deployment.

Conversely, we aim to provide a system suitable for online re-authentication. We

first employ a finer-grained data collection methodology, allowing us to collect far

more data in less time. We also employ support vector machines (SVMs), which

1 referred to as session length in [3,78].

11

are considerably faster than the neural networks employed in [3,78]. Thus, our

system can make a decision in just several mouse clicks.

More recently, a survey covering the existing works in mouse dynamics has

been conducted with a comparative experiment [58]. It points out that mouse dy

namics research should be more aware to reduce verification time and take the

effect of environmental variables into account. It can be seen later that, com

pared to other works, our approach also achieves high accuracy but only requires

a small amount of biometric data. Moreover, we explore the effects of environ

mental factors (different machines, mice, and time) and show that our approach

is relatively robust across different operating environments and times.

Graphical passwords [21,100] are a related form of user authentication, re

lying on HCI through a pointing device to authenticate a user. Mouse dynamics

differ in that they differentiate between users by how the users move and click the

mouse, rather than where the users click. Graphical passwords record where the

user clicks on the screen, and subsequently use this sequence as a substitute

password. Systems such as these are complementary to our work, and can be

deployed together. For instance, one might employ a graphical password sys

tem while passively recording a user’s mouse dynamics, utilizing the passively

recorded measurements as a secondary failsafe to verify the user’s identity. This

is similar in spirit to using keystroke dynamics with password hardening as in [76].

2.2 Measurement and Characterization

2.2.1 Data Collection

We collect two sets of data. The first data set is from a controllable environment,

referred to as the controllable set; while the second data set is from an online

forum in the field, referred to as the field set. We have obtained approval from the

Institutional Review Board (IRB) of our university, which ensures the appropriate

12

and ethical use of human input data in our work.

For the controllable set, 30 users are invited personally to participate in the

data collection. They are from different ages, educational backgrounds, and oc

cupations. We intentionally set a normal environment for these users and inform

them to behave as naturally as possible. Mouse movement data are recorded

during their routine computing activities. These activities range among word pro

cessing, surfing the Internet, programming, online chatting, and playing games.

We make use of a logging tool RUI [67] to record their mouse movement activities.

For the field set, more than 1,000 unique forum users’ mouse movements

are recorded by JavaScript code, and submitted passively via AJAX requests

to the web server. On one hand, these users are anonymous but identifiable

through unique login names. However, there is no guarantee on the amount of

data collected for a certain user. A forum user could be logged in for a long time

with frequent mouse activities, or could perform just one click and then leave. On

the other hand, the breadth of this corpus of users is utilized to serve as the base

profile for both training and testing purposes.

The raw mouse movements are represented as tuples of timestamp and Carte

sian coordinate pairs. Each tuple is in the form of (a c t i o n -t y p e , t,x,y), where

a c t i o n -t y p e is the mouse action type (a mouse-move or mouse-click), t is the

timestamp of the mouse action, x is the x-coordinate, and y is the y-coordinate.

Timestamps in our data collection are collected in milliseconds.

Data Processing

The purpose of preprocessing is to identify every point-and-click action, which is

defined as continuous mouse movements followed by a click. Continuous mouse

movements are series of mouse movements with little or no pause between each

adjacent step. Within the ith point-and-click action for a user c, we denote the j\h

mouse move record as (m o u s e -m o v e ,ti,Xi,yi)Ctj, where u is the timestamp of

13

Figure 2.1: Illustration of angle-based metrics.

the ith mouse movement. Based on the record that belongs to each point-and-

click action, we calculate angle-based metrics.

Metrics

To analyze the mouse movement data, we define three fine-grained angle-based

metrics: direction, angle of curvature, and curvature distance. These newly-

defined metrics are different from the conventional metrics, such as speed and

acceleration, and can accurately characterize a user’s unique mouse moving be

haviors, independent of its running platform.

• Direction. For any two consecutive recorded points B and C, we record the

direction traveled along the line B(5 from the first point to the second. The

direction is defined as the angle between that line B(5 and the horizontal

(see angle x in Figure 2.1).

• Angle of Curvature. For any three consecutive recorded points A, B, and C,

the angle of curvature is angle Z.ABC\ i.e., the angle between the line from

A to B (A§) and the line from B to C (B&) (see angle y in Figure 2.1).

• Curvature Distance. For any three recorded points A, B, and C, consider

the length of the line connecting A to C (A&). The curvature distance is the

ratio between the perpendicular distance from point B to the line ~A& (see

the perpendicular lines in Figure 2.1) and the length of A&. Note that this

metric is unitless because it is the ratio of two distances.

14

As a comparison, we list the definition of two traditional mouse movement

metrics, speed and pause-and-click, as follows.

• Speed. For each point-and-click action, we calculate the speed as the ratio

of the total distance traveled for that action divided by the total time taken to

complete the action.

• Pause-and-Click. For each point-and-click action, we measure the amount

of time between the end of the movement and the click event. In other

words, this metric measures the amount of time spent pausing between

pointing to an object and actually clicking on it.

2.2.2 Mouse Movement Characterization

Dependence on Different Platforms

One problem we came across in analyzing our data is that it may be difficult or

meaningless to compare two users who are using very different machines. The

entire user’s environment can affect its data: the OS used, screen size and reso

lution, font size, mouse pointer sensitivity, brand of mouse, and even the amount

of space available on the desk near the mousepad. Metrics such as speed and

acceleration, then, are poor choices for comparison between users of arbitrary

platforms. This is because these two metrics can be skewed by differences in

screen resolution and pointer sensitivity. On the other hand, metrics such as

pause-and-click are highly dependent on the content a user is reading. For ex

ample, a user tends to pause longer before clicking a link on a rich content page

such as a wiki article, and hesitates for a much shorter time before clicking a

“submit” button.

This makes a good case to use angle-based metrics for arbitrary user com

parison instead. Direction and angle of curvature are not based on screen size

or any other element of the user’s environment, and thus are relatively platform-

15

0 SO 100 150 200 2S0 300 350
Direction Angle [degree]

Figure 2.2: Direction Angle metric plotted for two different users on two different machines each.

Userl (ENV1J
Userl ENV 2
User2 (ENV 1
User2 ENV 20.8

0.6
u.
QO

0.4

0.2

135 140 145 150 155 160 165 170 175 180
Curvature Angle [degree]

Figure 2.3: Angle of Curvature metric plotted for two different users on two different machines each.

independent. Likewise, curvature distance is a ratio of distances on the screen,

and thus self-adjusts for the user’s specific environment. A ratio can be compared

to another user’s ratio across platforms.

Figures 2.2, 2.3, and 2.4 show the comparison of two users with angle-based

metrics. We can see that the cumulative distribution function (CDF) curves for the

same user’s individual data are very similar and well synchronized in shape, even

across platforms. This indicates that angle-based metrics are relatively stable on

different platforms.

Uniqueness of Angle-Based Metrics Across Users

The other distinctive feature of angle-based metrics is that they are unique across

users. Not only does the same user have very similar angle-based results on

16

0.9

0.8

u .QO 0.7

0.6

0.5

0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Curvature Distance [no unit]

Figure 2.4: Curvature Distance metric plotted for two different users on two different machines each.

different platforms, but different users have clearly different angle-based results,

even on similar platforms.

Again, as Figures 2.2,2.3, and 2.4 show, even though each user’s CDF is con

sistent across different platforms, there is a distinct gap between different users’

CDF curves, even on the same platform. As a comparison, Figure 2.5 shows the

CDF curves with respect to the speed of the two users, a more commonly-used

metric. Figure 2.6 shows the CDF curves with respect to the pause-and-click of

the two users. While the different users' CDF curves in both speed and pause-

and-click are closely coupled on the same environment, there is a distinct gap

between the same user’s two curves for different environments. Since the closest

matching curve for either user is the curve of the other user under the same envi

ronment, it can be very hard to uniquely differentiate people using these metrics.

Together with the platform independence discussed above, this makes angle-

based metrics superior to speed and pause-and-click for user verification. Note

that for easy presentation, we only compare the difference of the mouse dynamics

between a pair of users. However, the similar observation holds for the other

users.

17

0.8

0.6
u.oo

0.4

Userl (ENV 1]
Userl ENV 2
User2 (ENV 1
User2 ENV 2

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Speed [px/mlllisec]

Figure 2.5: Speed metric plotted for two different users under two different environments each.

0.8

0.6
u.
O
o

0.4

Userl (ENV 1)
Userl ENV 2
User2 ENV 1
User2 (ENV 2

0.2

0 500 1000 1500 2000 2500
Pause [mlllisec]

Figure 2.6: Pause-and-click metric plotted for two different users under two different environments each.

Distance Between Distributions

Using the distance between two probability distributions, we further verify if the

angle-based features of a user remain relatively stable across different types

of mice, platforms, and time, in comparison with those of the other controllable

users.

We define the distance between two probability distributions as follows. Since

angle-based features are continuous variables, we divide their whole range into

discrete intervals, called bins, and calculate the probability density functions (PDFs)

regarding to each bin. Consider two distributions: the first is expressed as PDF

{p i ,P2 , . . . ,pn}, where p* represents the probability of falling into the ith bin; the

second distribution is expressed similarly as PDF {qi,g2, ..., g„}. The distance be-

18

Target User: 1-A
1.1

1

0.9

8 08
8 0.7W
3 0.6

0.5

0.4

0.3

User 1
Others

d
v»* ‘ > V<»V» 4 ' * 4 4 4 4 V

User ID

Figure 2.7: Distances from one user's curvature angle distribution to those of others, as well as to itself in different
settings.

tween the two distributions is the accumulated deviation from each other over all

bins:

D(p , q) = \Pi~Qi \ -
i

Of course, the distance here is dependent on the size of each interval. The

smaller we divide the interval, the more subtle differences the distance reflects.

However, the bin should not be so small as to enlarge noise.

Figure 3.5 plots the distances of a user from the other users, as well as from

itself using a different mouse on a different machine at very different time. Each

user's PDF is computed over 1,000 curvature angles randomly selected from its

data, and loops for 10 times. The height of each bar is the average distance from

the target user (labeled as user 1) in setting A (indexed by 1-A in the figure), and

each error bar is standard deviation over the 10 times. Data 1-A, 1-B, and 1-C

are all from user 1. The details of these three settings are listed in Table 2.1.

Moreover, data 1-B are recorded two and half months later than data 1-A, and

data 1-C are recorded two days later than data 1-B.

It is clear that the distances from user 1 to itself using different mice, at dif

ferent machines, and over different times are the two smallest in the figure, i.e.,

both are smaller than the distances from user 1 to any other users with the same

setting. This implies that the angle-based behavior of a user has its own inherent

19

Setting Machine Type Mouse Type

1-A Dell Precision T3500 Dell MOC5UO
Two-Button
Scroll-Wheel

1-B Apple Macbook MB990LL/A Apple A1152
One-Button
Trackball

1-C Apple Macbook MB990LL/A Dell MOC5UO
Two-Button
Scroll-Wheel

Table 2.1: Setting Details

pattern which is relatively stable across different settings and times; meanwhile, it

is also distinguishable from the behaviors of other users. Note that in Figure 3.5,

the distance values between user 1 -A and some users are very close to each

other (e.g. the distance value of user 23 and that of user 27). However, it does

not indicate that the behaviors of those users are similar, because the definition

of distance here is an accumulation of deviations at different bins. The dynamics

of two users’ PDFs could be totally different, but at the same time both deviate

equally from a third user.

Note that to achieve accurate measurement results, there are two prerequi

sites in characterizing mouse movement under different environments. First, the

polling rates of mouse recorders at different platforms should be configured to the

same level. Second, prior to characterizing a user’s mouse movement, sufficient

mouse events must be collected to create a profile of the user’s mouse move

ment. In particular, we observed that 1,000 mouse actions (which on average

can be collected in 2 hours) are large enough to profile a user's mouse behavior

well.

Number of Mouse Clicks in a Real Session

For the field set, drawn from 1,074 real users on an online forum over the course

of an hour, we recorded an average of 15.14 clicks per user session. Note that

because this data was gathered over a one-hour window, this value is a lower

20

Recorder

Record User
Mouse

Movements

Pre-processor

Extract Point-
and-Click

Actions

Classifier

Calculate
Decision
Scores

Decision
Maker

Classify b /t
User and

Imposters

Figure 2.8: System Architecture

bound on the actual number of clicks in an average user session. Any user

who was logged in before the window began or stayed logged in after the win

dow ended (including users who stayed logged in longer than an hour) would

necessarily have more clicks than recorded. Thus, the actual average is almost

certainly higher, and probably much higher.

The number of mouse clicks per user session is closely related to verification

time. With the average number of mouse clicks per session being about 15, a

verification system based on mouse dynamics must be able to identify a user in

fewer than 15 clicks in order to ensure that, on average, a decision is made within

one user session. As shown in Section 2.4, our approach can verify a user’s

identity with high accuracy in only 15 clicks, so our system can reliably make the

right decision before the user logs off in a majority of cases.

2.3 System Architecture

As shown in Figure 2.8, our proposed user verification system consists of four

components—recorder, preprocessor, classifier, and decision maker.

The design of the first two components is straightforward. The main task

of the recorder is to record users’ mouse movements, while the preprocessor

computes the angle-based metrics based on the recorded raw data. The focus of

this section is on the design of the classifier and that of the decision maker.

21

2.3.1 SVM Classifier

We choose Support Vector Machines (SVMs) as our classifier to differentiate

users based on their mouse movement dynamics. SVMs have been success

fully used in resolving real-life classification problems, including handwritten digit

recognition [104], object recognition [83], text classification [57], and image re

trieval [102]. In general, SVMs are able to achieve comparable or even higher

accuracy with a simpler and thus faster scheme than neural networks.

In the two-class formulation, the basic idea of SVMs is to map feature vectors

to a high dimensional space and compute a hyperplane, which separates the

training vectors from different classes and further maximizes this separation by

making the margin as large as possible. SVMs classify data by determining a

set of support vectors, which are members of the set of training inputs outlining a

hyper plane in feature space [105].

For a binary classification problem, given I training samples {x*, &}, i = 1,. . . , I,

each sample has d features, expressed as a d-dimensional vector x* (xi e Rd),

and a class label yt with one of two values f a e { - l , l }) . A hyperplane in d-

dimensional space can be expressed as w • x + b = 0, where w is a constant

vector in d dimensions, and b is a scalar constant. We aim to find a hyperplane

that not only separates the data points but also maximizes the separation. As Fig

ure 2.9 shows, the distance between the dashed lines is called the margin. The

vectors (points) that constrain the width of the margin are the support vectors.

The formulation of our binary class SVM problem is to:

minimize: W (a) = - a T 1 +]-aTHa,
m i

such that: aTy = 0, 0 < a < C l,

where matrix (H)^ = ytyjfai • xj), a is the vector of I non-negative Lagrangian

22

Small Margin Support Vectors Large Margin

Figure 2.9: SVM hyperplane in two dimensional feature space [36].

multipliers to be determined, and C is a constant. This minimization problem

is known as a Quadratic Programming Problem (QP), which is well studied with

many proposed efficient algorithms.

In reality, not all data points can be linearly separated as we assumed. To

handle this issue, SVMs use a “kernel trick”. The data are pre-processed in such

a way that the problem is transformed into a higher dimension, where they are

linearly separable in the new feature space. Given a mapping z = <f>(x), and

defining the kernel function as K(xatxh) = </>(xa) • <j)(xb), our classifier would be

A popular choice of kernel function is the Gaussian Radial Basis Function (RBF)

K(xa,xb) = exp (- 7 ||xa - x6||2) , where 7 > 0 , and is a tunable parameter. In

practice, RBF is a reasonable first choice among other kernels, due to its gener

ality and computational efficiency [18].

Thus, the procedure to resolve a classification problem using SVMs is: (1)

choosing a kernel function, (2) setting the penalty parameter C and kernel pa

rameters as well, if any, (3) resolving the quadratic programming problem, and

(4) constructing the discriminant function from the support vectors. In particular,

we view the user verification problem as a two-class classification problem, and

the learning task is to build a classifier based on the user mouse movements.

In our proof-of-concept implementation, we used the open source SVM pack

age LIBSVM 3.0 [18] for building the prototype. LIBSVM is an integrated tool

for support vector classification. We used the default RBF kernel and the cross-

validation to find the best parameter C and 7 . In our study, all impostors are

classified as +1, and normal data are classified as -1. The detailed experiment

setups will be discussed in Section 2.4.

2.3.2 Decision Making

In the design of the decision maker, we use two mechanisms, threshold and

majority vote, to further improve verification accuracy.

Threshold

The threshold determines how SVMs’ output is interpreted: a value over the

threshold indicates an impostor, while a value under the threshold indicates a

true user. To make a user verification system deployable in practice, minimizing

the probability of rejecting a true user is sometimes even more important than

lowering the probability of accepting an impostor.

By default, in a binary classification problem with labels in {+1, -1 } , LIBSVM

outputs a score called a decision value for each testing sample. If the decision

value is greater than 0, the sample is classified as +1, otherwise it is classified as

- 1.

Majority Votes

To build the profile for an authorized user, in training, we randomly pick m/2 sam

ples that belong to the user, labeled as negative (non-impostor), and another

random m/2 from the field set, labeled as positive (impostor). We employ a sim

ple majority vote decision making scheme in order to improve and stabilize the

24

verification accuracy. Specifically, before verifying if a sample belongs to the tar

get user, we train the user’s profile 2n + 1 times. Each time the training samples

are different since they are randomly selected. In this way, there will be 2n +1

votes about the predicted label for each testing sample.The label that is voted by

the majority, i.e., with greater than n votes, will be the final predicted label. With

majority votes, the decision maker can significantly reduce the randomness of the

results and improve verification accuracy.

2.4 Experimental Evaluation

In this section, we evaluate the effectiveness of our mouse movement based ver

ification system through a series of experiments, in terms of verification accuracy,

verification time, and system overhead. The verification accuracy of our system is

measured using (1) the false reject rate (FRR), which is the probability that a user

is wrongly identified as an impostor, and (2) the false accept rate (FAR), which is

the probability that an impostor is incorrectly identified as a user. Here we define

a block as follows:

Block (or detecting block) A block is composed of mouse movements in a group

of point-and-click actions. Statistical features are calculated based on all

mouse movements in one block.

Note that choosing different sizes (that is, choosing different number of point-and-

click actions contained) of a block greatly affects verification accuracy, in terms of

FAR and FRR.

The verification time is the mean time needed to detect an identity mismatch.

This corresponds to the sum of the time for the user to generate mouse actions

needed to make a decision, the time to extract the features for this session, and

the time to classify the identity. In our approach, the number of mouse actions

needed to make a decision equals to the number of clicks contained in one block.

25

As described before, a block corresponds to one sample in either training or test

ing. Verification time is determined by the total number of actions needed to make

decisions and the average time cost per action. In general, the larger the number

of actions required for decisions and the higher the average time cost per action,

the longer the verification time becomes.

2.4.1 Experimental Setup

As described in Section 2.2.1, our experiments are based on two sets of data.

The first data set is collected in controllable environments. A total of 81,218 point-

and-click actions are captured, with an average 5,801 point-and-click actions per

user. Overall, 150 hours of raw mouse data are collected. The second data set is

recorded from 1,074 anonymous users in an online forum for one hour.

These two data sets serve different purposes. A target user is selected from

the first data set as the user to be verified, while forum users from the second data

set are used as the background. Whereas we can identify a forum user based

on its unique login name, the lack of guarantee on its collected data makes it

unsuitable to be the verified target. The preprocessor extracts each user’s point-

and-click actions and computes the angle-based metrics corresponding to each

point-and-click. Each of those generated files containing point-and-click actions

is divided into two halves. The training data will be extracted from the first half,

while the testing data will be from the second half. Therefore, there is no overlap

between the training data and the testing data.

2.4.2 Verification Results

We construct our classification model based on self and non-self discrimination.

That is, for a given user, its profile is learned from a certain number of its own

mouse movement samples and an equal number of others’ mouse movement

samples. Therefore, the training data is composed of positive samples and an

26

40
500 training blocks —
300 training blocks •-
100 training blocks --

35

30

25

20

15

10

5

0
0 20 255 10

Number of Clicks in a Block
15

7
500 training blocks
300 training blocks
100 training blocks

1
I
Iu.

4

3
2

1

0
10 15 :

Number of Clicks in a Block
0 205 25

(a) False Reject Rate (b) False Accept Rate

Figure 2.10: Variation of FRR and FAR with the number of clicks. Error bars indicate standard deviation.

equal number of negative samples. We train a separate model for each user in

the controllable set. In the training file for a given user, a negative case is a block

of point-and-click actions that belongs to itself, while a positive case is a block of

clicks that belongs to others. Here, others' mouse movement blocks are randomly

chosen from the forum set, due to its large user population.

There are four configurable parameters in our system: the size of a detecting

block, the size of the training data, the threshold, and the number of votes. The

first two are associated with the SVM training process. Increasing the threshold

value directly lowers false reject rate (FRR), but at the cost of raising false ac

cept rate (FAR). Increasing the number of votes improves verification accuracy in

terms of both FRR and FAR, but increases the verification time.

To fully evaluate verification accuracy, we conduct two sets of experiments. In

the first set of experiments, we test our classification model trained in the same

environment. In the second set of experiments, we test the classification model

trained in a different environment.

Self and Non-Self Discrimination in Same Environment

We first configure the number of mouse clicks per block and the size of the training

data. The FRR and FAR with different sizes of detecting blocks and training data

27

i

Threshold - 0.0
Threshold - 0.5
Threshold - 1.0

9
8

7

6
5

4

3

2

t

00 205 to 15 25
Number of Clicks in a Block

(a) False Reject Rate

30
Threshold - 0.0
Threshold - 0.5
Threshold-1 .025

20

15

10

5

00 5 10 15 20
Number of Clicks in a Block

(b) False Accept Rate

Figure 2.11: Variation of FRR and FAR with threshold.

are shown in Figures 2.10(a) and 2.10(b), respectively. These tests are performed

with the default threshold of 0.5 and 5 out of 9 (5/9) majority votes. As larger

detecting block size and training data are provided, the SVM classifier becomes

more accurate, but we see diminishing returns in accuracy as the number of

actions increases, e.g., going from 10 clicks to 25 clicks requires 150% more

input but only provides a relatively small increase in verification accuracy; also

going from 100 training samples to 300 training samples requires 200% more

data, but only returns a relatively small increase in verification accuracy.

With the SVM classifier configured, the last two parameters, the threshold and

the number of votes, determine the overall performance of the system.

The threshold can be increased or decreased from the default value of 0.0 to

bias the classifier towards authentic users or impostors, lowering the FRR or FAR,

respectively. As mentioned in Section 2.3.2, this is a tradeoff between user in

convenience level and system security level. After multiple tests, we observe that

setting the threshold value to 0.5 yields a false reject rate 1 % on average. There

fore, throughout this chapter, we only show results with a threshold value of 0.5.

Setting the threshold value affects both FRR and FAR. Figure 2.11 shows that

increasing the threshold value greatly lowers FRR at different sizes of a detecting

block.

28

8
Single Vote
aiority Votes
ajority Votes

2/3 Mi
3/5 Ml

7

I
i

3

iE 2
1
00 5 1510 20 25

20
Single Vote

2/3 Majority Votes
3/5 Majority Votes

18

16

14

12

10

8
6
4

2 0 5 10 2015 25
Number of Clicks in a Block Number of Clicks in a Block

(a) False Reject Rate (b) False Accept Rate

Figure 2.12: Variation of FRR and FAR with majority votes.

The use of majority votes increases the verification accuracy of the system,

in terms of both FRR and FAR. Figure 2.12 shows the improvement of FRR by

majority votes. However, increasing the number of votes means longer verifica

tion time, since for n votes the classifier needs to be run n times. Figure 2.12

indicates that the improvement by 2/3 majority votes is comparable to that of 3/5

majority votes.

With a fully configured system (500 training blocks, a threshold of 0.5, and

3/5 majority votes), Table 2.2 lists FRR and FAR averaged over 30 users in the

controllable set. It can be seen that, if there are 25 clicks in one block, the average

false reject rate is 0.86%, so there is only a little chance that an authenticated user

is misclassified as an impostor. Meanwhile, we achieve an average false accept

rate of 2.96%.

Number of Clicks FRR FAR
1 4.57% 18.79%
3 2.59% 10.81%
5 2.02% 7.67%
10 1.27% 5.23%
15 1.03% 3.13%
20 0.70% 3.32%
25 0.86% 2.96%

Table 2.2: Variation of FRR and FAR with Different Number of Clicks in One Block

29

20

15

10

5

0
0 5 10

Number of Clicks in a Block
15 20

Figure 2.13: FRR and FAR for one user profiled on one platform and tested on another platform.

Self and Non-Self Discrimination in Different Environment

To verify that our approach also works in different environments with different

machines, we conduct another self vs. non-self discrimination experiment on two

different machines. More specifically, the user’s profile is trained from its mouse

movements in a work environment on a desktop, while its mouse movements in a

home environment on a laptop are tested. The testing user base includes 5 users.

The corresponding FRR and FAR are shown in Figure 2.13, each represented by

a single curve, respectively. Note that a user is profiled on one platform but tested

on a different one, and hence a single plot shows the result of the test.

It can be seen that our approach works well across different environments and

platforms. It further confirms that our classification model indeed captures those

features that are intrinsic to a user and not affected by environmental factors.

Partial Movements

Partial movements are a series of continuous mouse movements without ending

in a click. On one hand, unlike point-and-click actions that have a certain object to

reach as a target, some partial movements could be aimless. For example, a user

may move its mouse just to stop the screen saver when watching a video. Thus,

we observe that the movements of point-and-clicks demonstrate a more consis

tent pattern than those of partial movements. However, most partial movements

are intentionally performed. For example, a user may often move its mouse to

30

aid reading. In addition, some partial movements are just as well-motivated as

point-and-clicks. A user could start moving the mouse to a link, but then decide

not to click on it.

Moreover, in a real user session, partial movements occur much more fre

quently than point-and-clicks. From the forum data we collected, there are only

0.53 mouse clicks per minute on average, but 6.58 partial mouse movements per

minute. Figure 2.14 shows the comparison of ROC (Receiver Operating Charac

teristic) curves with and without partial movements for a randomly selected user

(other users’ ROC curves are similar).

Suppose we choose 20 mouse clicks in a detecting block. On one hand,

without partial movements - that is, when only point-and-clicks are included -

the EER (equal error rate) is 1.3%; with partial movements, the EER increases

to 1.9%. On the other hand, using partial movements can lower the average

verification time by one order of magnitude (about 12 times) in our experiments.

Therefore, using partial movements will significantly reduce verification time, but

at the cost of accuracy degradation.

Subtleties on Verification Time

The verification time is the time required by a verification system to collect suf

ficient behavioral data and then make a classification decision. The value of

the verification time heavily depends on two factors: (1) the number of required

mouse clicks (or mouse movements if partial movements are included) in a de

tecting block, and (2) how frequently a user generates mouse actions. If the num

ber of mouse actions in a detecting block is already configured, the verification

time will be mainly determined by the latter.

There are two verification scenarios, static and continuous, when estimating

the number of mouse actions a user generates per unit time. In the scenario of

static verification, a user is required to perform a series of mouse movements

31

0.98

| 0.96

8 0.94

0.92

I
0.88

only point-and-clicks
with partial movements.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
False Acceptance Rate

Figure 2.14: ROC curves with and without partial movements.

and its mouse data is verified within a certain amount of time (e.g., login time). A

good example of this scenario is a click-based graphical password for user login,

where five clicks are estimated to be made in no more than 25 seconds [10,22].

This implies that the verification time will be less than 100 seconds if 20 mouse

clicks are needed in a testing block. By contrast, in the scenario of continuous

verification, a user’s mouse data is continuously collected and verified throughout

the entire session. This is non-intrusive to users and meets the goal of passive

monitoring. However, the frequency of user mouse actions varies significantly in

different sessions. In general, the average frequency of user mouse actions will

be much lower than that of the static scenario. The reason is that often there is a

period of silence between a user’s previous and next mouse actions while a user

is reading or typing. An observation from the forum data we collected indicates,

on average, it takes 1.89 minutes for one mouse click to happen. If we choose 20

mouse clicks in a detecting block, the verification time could be as long as 37.73

minutes; however, the verification time will be reduced to 3.03 minutes if partial

movements are used.

System Overhead

The verification system can be deployed in two different scenarios. In the first

scenario, for example, it can be used for access control in a computer lab or on a

personal computer. In this case, it will be installed at the client side by the system

32

administrator. In this standalone scenario, normally only a single user is present

for verification at any one time, and the end host has a plenty of resources to fulfill

the verification tasks. Thus, the performance impact caused by the verification on

the host is minor.

In the second scenario, for an online application such as banking account ver

ification, the system will be placed at the server side, with JavaScript embedded

inside users’ account home page. Deployed at the server side, our system needs

to be able verify hundreds or even thousands of users simultaneously in real-time.

Thus, system overhead becomes an issue, and the system must be efficient in

terms of memory and CPU costs.

We first estimate the memory overhead of the verification process. We profile

the verification process using the Linux tool valgrind, and find out that it only

consumes 3.915 KBytes of memory per testing block during the operation. The

primary memory cost is to accommodate the accumulated user-input actions and

SVM outputs for each online user. A single user-input action consumes 12 bytes,

4 bytes each for the 3 angle-based metrics. A detecting block of 10 user-input ac

tions consumes 120 bytes, and this is the per-user memory requirement. If 120

bytes is scaled to 1,000 online users, it is only 117.19KBytes in total, which is

negligible considering that online websites currently store the user name, pass

word, IP address, security questions and literally dozens of other attributes for

each user.

The computational overhead is the sum of CPU costs in pre-processing and

detecting (including classifying and decision making). The pre-processing on 15

minutes’ user inputs from more than 1,000 users in a typical website, including

5,270 point-and-click actions, takes only 20.937 seconds. The CPU cost is mea

sured on a Pentium 4 Xeon 3.0Ghz, using the Linux command time. Note that the

forum trace is collected during 15 minutes from about 1,000 online users, imply

ing that it takes about 23.3 milliseconds to process data generated in one second.

33

At the same time, the verification takes only 229 milliseconds over 5,801 point-

and-click actions. In comparison to pre-processing, this is negligible. Therefore,

the induced computational overhead is minor on the server.

In terms of disk space for storing user profiles, the signature of a single user

profile generated by the training process consumes 203.32KBytes. If it is scaled

to 100,000 users, that is 19.4GBytes, which is very affordable at a personal com

puter, let alone a high end server.

2.4.3 Classification of Pointing Devices

In reality, it is common that a same user uses different kinds of pointing devices

from time to time. For example, a laptop user may use the on-board touchpad

for some time, but switch to a USB-connected mouse when a larger desk space

is available. Therefore, it is desirable to detect the type of pointing device being

used in a non-obtrusive way. In other words, the question we attempt to answer is,

given a series of cursor movements, is it possible to tell if they are from a touchpad

or a computer mouse? Intuitively, there exist some biomechanical differences be

tween a touchpad and a mouse because their driven forces are different [32,85].

While a touchpad involves more finger movements, a mouse involves more wrist

movements. In addition, when people use a mouse, they are more likely to move

their whole arm. Fitts’ law analysis shows [70] that the index of performance for

the touchpad is between 1.6 to 2.3, whereas the computer mouse has the values

ranging from 2.6 to 10.4. Thus, generally it takes longer time to move the cursor

with a touchpad than with a computer mouse. All these factors contribute to a

detectable difference between the moving behavioral patterns using a touchpad

and a mouse.

Here we introduce an additional angle-related metrics, moving orientation, in

which a movement direction falls into one of the eight sections shown in Fig

ure 2.15. We further define a set of new features by associating moving orien-

34

225* 315*

270*

Figure 2.15: The entire angle range 360° is divided into eight sections. The eight divisions of angle, each with a resolution
of 45°, are labeled with numbers 1 to 8. For each section, the average values of metrics are calculated as features, in
order to differentiate between mouse and touchpad data.

tation with speed and curvature angles. In particular, we average all the corre

sponding metric values like speed per orientation section. As a result, for a given

metric, there are eight average values with respect to the eight different moving

orientations in total. These additional features are described as follows.

• Normalized Step-wise Speed per Moving Orientation. In Figure 2.1, a step

wise speed is calculated as the length of vector over the time difference

between A and B. It is further normalized with the averaged step-wise

speed over the whole continuous movement. Our purpose is to quantify the

distribution of moving speed with respect to different moving orientations.

• Averaged Curvature Angle per Moving Orientation. The choice of this fea

ture is due to the underlying differences in using touchpad and mouse —

they involve different bodily parts for movements: the former is mostly with

finger, while the latter is with both wrist and finger. These two different

moving mechanisms make their kinetic traits deviate from one orientation to

another. For this very reason, exploring these angle-related dynamics suits

our need in differentiating mouse and touchpad data.

• Change of Adjacent Curvature Angles per Moving Orientation. The varia

tion of curvature angle is closely related to angular acceleration. From phys-

35

ical science, angular acceleration is proportional to moment of force (also

known as torque, r = r x F). And again, touchpad and mouse usages

involve different bodily parts, which affects the magnitude and direction of

forces exerted on the pointing devices, and in turn the angular acceleration

is affected. Overall, this feature depicts one more aspect of differences in

touchpad and mouse behaviors.

We differentiate movement behaviors between a traditional mouse and a touch

pad by employing these new metrics and features, in addition to the three metrics

introduced in Section 2.2.1. In accuracy evaluation, we collected a data set from

21 users using either mouse or touchpad. Figure 2.16 plots the results of classi

fication accuracy based on the above feature set. The curve shows the accuracy

as the function of the number of mouse events per block. On average, there are

about 10 mouse events in one mouse click action. Thus as shown in Figure 2.16,

we can achieve more than 90% accuracy in differentiating mouse and touch

pad after 400 events or about 40 point-and-clicks. Generally the more mouse

events are available in calculation of features, the higher accuracy we achieve.

Some small fluctuations present in the curve, and it is not always monotonically

increasing with more mouse events per block. This is because we use statistics

for computing the features. There exists random noise, and hence more mouse

events does not always make it closer to the true distribution.

2.4.4 Classification within Controlled Dataset

In order to cross validate our approach, we conduct an additional set of experi

ments only using the controlled dataset. Within the controlled dataset, half of the

users act as the target users, and the other half serve as impostors only. We

run one round of classification for each target user, where the rest of users in the

controlled dataset (i.e., non-target-users) are treated as the background. With a

block size of 20 point-and-clicks and the training size of 200 blocks, the average

36

Accuracy in Differentiating Mouse and Touchpad Data
96

94

92

90

88

86

84

82
200 300 400 500 600 700 800 900 1000

Number of Mouse Events in a Block

Figure 2.16: The classification accuracy in differentiating mouse and touchpad data, as a function of the increasing number
of mouse events per block.

Source FRR FAR Data required Settings Notes

[3] 2.4649% 2.4614% 2000 mouse actions Continuous Free mouse movements

[78] 0% 0.36% 2000 mouse actions Continuous Free mouse movements

[45] 2% 2% 50 mouse strokes Static Mouse movements from a memory game

[88] 1.75% 0.43% Not specified Continuous Applies to a certain application

[93] 11.2% 11.2% 3600 mouse curves Continuous Free mouse movements

Ours 1.3% 1.3% 20 mouse clicks Continuous Free mouse movements

Table 2.3: Comparison with Existing Works

accuracy turns out to be 92.12%. The accuracy slightly declines in comparison

to that with the field dataset. This is because the field dataset contains a much

larger pool of mouse actions from non-target-users than the controlled dataset.

As a result, with the field dataset, the impostor model learned by the classifier

captures a richer profile of non-target-user behaviors. And in the context of two-

class classification, the boundary between a target user and impostors in the

feature space can be more accurately recognized, which yields higher accuracy

when utilizing the field dataset rather than the controlled dataset.

2.4.5 Comparison with Existing Works

We compare our evaluation results with those of existing works in terms of verifi

cation accuracy and time, which are listed in Table 2.3. As described in Section

2.4.2, the verification time is highly dependent on the number of mouse events

37

needed to make a decision, the type of mouse events used (mouse click, mouse

move, or drag-and-drop), as well as how fast a user generates mouse events.

Even for the same user at different times, the number of mouse events per unit

time varies a lot. However, to the best of our knowledge, our work is the first to

achieve high accuracy with a reasonably small number of mouse events.

2.5 Discussion

Since our verification system records users’ mouse movements and clicks, pri

vacy concerns may arise. However, compared to keystroke dynamics, the amount

of personal information included in mouse dynamics is minimal. In the process of

recording keystrokes, the system would record the user’s passwords, user names,

and other sensitive textual information. By contrast, recording mouse dynamics

only reveals the physical movements of a mouse and its clicks within a certain

period of time, giving away little to no information about user credentials. Even

with the perfect knowledge of a user’s mouse movements, the only things an ad

versary can figure out are when the user clicked and on which position of the

screen. Thus, we believe that our verification system will not cause any privacy

violations.

In general, mouse-dynamics-based re-authentication techniques are robust

against online forgery. A person’s unique mouse dynamics are similar to its sig

nature, and like a signature, it is difficult to mimic even with the complete knowl

edge of the original. In fact, a user’s mouse dynamics is a continuous process,

making it much harder to forge than a signature. Unlike forging a signature, which

only has to be accomplished once, the adversary of our verification system would

need to mimic the true user’s mouse patterns continuously for the entire length

of the session. It is extremely difficult for one user to force itself to consistently

move the mouse in such a mechanical way that it matches specific angles, even

38

if those metrics are known ahead of time. Thus, mouse dynamics generally and

our fine-grained angle-based approach in particular, are very robust against on

line forgery. However, how vulnerable mouse-dynamics-based approaches are to

offline attacks, especially generative attacks which create concatenative synthetic

forgeries [8], is still an open question and will be investigated in our future work.

The retraining of our classifier is necessary to deal with sudden, perhaps

temporary, changes in a user’s mouse profile. If the user’s behavior suddenly

changes, due to an unexpected complication such as a sprained wrist, the differ

ence in mouse usage could be large enough for the user to be unrecognizable

by the verification system. The system would classify the user as an impos

tor and prevent that user from accessing its own account. While these sorts of

occurrences are relatively rare, to avoid the possible rejection, the user can eas

ily appeal to a system administrator to retrain the classifier with the user’s new

movement patterns. Once the user’s behavior returns to normal (for example, the

user’s wrist heals), we can either retrain the system again, or simply reuse the

previous classifier if a backup is available.

Although our approach is relatively independent of the running environments,

it is sensitive to the polling rate of mouse movement recording. In the mouse

data collection, a continuous mouse movement is discretized to a set of mouse

coordinates, which are sampled at a certain rate. Thus, the measured resolution

of mouse movements is dependent on the polling rate of a recorder. The faster

the polling rate is, the more fine-grained movements we capture. For example,

given a mouse movement curve, a high polling rate can render a smooth accurate

shape, but a low polling rate more likely profiles it as a zigzag path. For this

reason, in our data collection on different environments, the polling rates of the

recorders are configured to the same value. In fact, it is not difficult to maintain

a given polling rate under different running environments. Through I/O methods

provided in most common programming languages, we are able to set timers and

39

capture mouse cursor position at a fixed interval.

It is true that with an increase in user population, there is a higher chance that

two users share the similar mouse movements. In fact, known as “the scalability

problem”, this is a common problem for almost all biometrics approaches. In face

recognition, if more people are tested, it is more likely that two users’ faces are

similar and could make the classifier fail. The same thing happens in keystroke

dynamics, and it has been determined that the accuracy of keystroke dynamics

decreases with the increase in sample size [13,84].

Though promising, our accuracy is unable to reach the European Standard for

Access Control Systems, which requires a false acceptance rate (FAR) of under

0.001 % and a false rejection rate (FRR) of under 1 %. Therefore, we believe that

our scheme is more suitable to work together with other authentication methods

for user verification, instead of working as a stand-alone authentication system.

2.6 Conclusion

In this chapter, we present a new approach to user re-authentication using the

behavioral biometrics provided by mouse dynamics. Our approach focuses on

fine-grained angle-based metrics, which have two advantages over previously

studied metrics. First, angle-based metrics can distinguish a user accurately

with very few mouse clicks. Second, angle-based metrics are relatively inde

pendent of the operating environment of a user, making them suitable for online

re-authentication.

Our system mainly consists of a recorder, which gathers a user’s mouse dy

namics, and a support vector machine (SVM) classifier, which seeks to verify a

user as either an impostor or an authenticated party. We gathered two sets of

data: one set of 30 users under controlled circumstances, and another set of

over 1,000 users on a forum website. We evaluated the system performance in

40

terms of verification accuracy and time, resulting in a equal error rate (EER) of

1.3% with just 20 mouse clicks. We also showed that, for a system deployed at

server side, the overhead required for online verification is negligible.

41

3 User Verification on Smartphones

via Tapping Behaviors

This chapter is on our second work in developing another behavior-based user

verification system on smartphones. Exploiting a variety of on-board sensors

(accelerometer, gyroscope, and touchscreen sensors) readily available on smart

phones, we establish user-specific tapping patterns that can distinguish him/her

from others. This chapter is structured as follows. Section 3.1 and 3.2 reviews

the background and related work in the area of smartphone user authentication.

Section 3.3 describes our data collection and measurement, including our choice

of metrics. Section 3.4 details the proposed classifier for user verification. Sec

tion 3.5 presents our experimental design and results. Section 3.6 discusses

issues which arise from the details of our approach, and Section 3.7 concludes.

3.1 Background

The tapping behaviors of individual users on touchscreen vary from person to

person due to differences in hand geometry and finger agility. Each user has

a unique personal tapping pattern, reflected on the different rhythm, strength,

and angle preferences of the applied force. As our tapping-behavior-based ap

proach verifies the owner of a smartphone based on “who you are” - your physical

and behavioral traits, instead of “what you know”, it belongs to biometrics-based

42

user authentication. In general, a biometrics authentication system authenticates

users either by their physiological traits like faces and voices [11,72] or behavioral

patterns like finger typing and hand movements [77,116].

While physiological traits can achieve high accuracy in the process of user

authentication, they have not been widely used in mobile devices. Recent stud

ies have also shown that the physiology-based mechanisms deployed in mobile

devices are sensitive to certain environmental factors, which could significantly

diminish their accuracy and reliability. For example, face recognition may fail due

to a different viewing angle and poor illumination [86], and voice recognition de

grades due to background noise [11]. However, given the same mobile device,

behavioral biometrics tend to be less sensitive to the surrounding environmental

factors like darkness or noise.

Exploiting the behavioral information captured by multiple sensors on a smart

phone, we can exclusively create a detailed user profile for verifying the owner of

the smartphone. Since our approach works seamlessly with the existing passcode-

based user authentication mechanisms in mobile devices, it plays a role of implicit

authentication. In other words, our approach can act as a second factor authenti

cation method and supplement the passcode systems for stronger authentication

in a cost-effective and user-transparent manner. More recently, seminal works

have been proposed to explore the feasibility of user verification employing the

behaviors of pattern-based passwords [30]. However, the false reject rate (FRR)

of their work is rather high, which means there is a high chance that the owner

of a mobile device would be mistakenly regarded as an impostor and be blocked

from accessing the device.

43

3.2 Related Work

A) Keystroke Dynamics and Graphical Passwords.

Keystroke dynamics has been extensively studied in distinguishing users by the

way they type their personal identification number (PIN) based passwords [65].

Research done on the analysis of keystroke dynamics for identifying users as they

type on a mobile phone can be found in [9,25,26,60,79,112]. Clarke et al. [26]

considered the dynamics of typing 4-digit PIN codes, in which the researchers

achieve an average Equal Error Rate (ERR) of 8.5% on physical keyboard on a

Nokia 5110 handset. Zahid etal. [112] examined this approach on touchscreen

keyboards and achieve, in one best scenario, a low Equal Error Rate of approxi

mately 2% with training set required a minimum of 250 keystrokes.

Researchers have also suggested the use of graphical passwords as an eas

ier alternative to text-based passwords [19,56], based on the idea that people

have a better ability to recall images than texts. A good overview of popular

graphical password schemes has been reported in [10]. Chang etal. [19] pro

posed a graphics-based password KDA system for touchscreen handheld mobile

devices. The experiment results show that EER is 12.2% in the graphics-based

password KDA proposed system, and EER is reduced to 6.9% when the pres

sure feature is used in the proposed system. Different usability studies have

outlined the advantages of graphical passwords, such as their reasonable login

and creation times, acceptable error rates, good general perception and reduced

interference compared to text passwords, but also their vulnerabilities [103].

B) Inferring Tapped Information from On-board Motion Sensors.

Several independent researches have found that simply by using data acquired

by smartphone motion sensors, it is sufficient to infer which part of the screen

users tap on [14,75,82,109]. The first effort was done by Cai et al. in 2011 [14].

44

PIN Users Actions Average Actions Per User Filtered-Out
3-2-4-4 53 1,751 33 0.80%
1-1-1-1 41 2,577 63 2.64%
5-5-5-5 42 2,756 66 3.70%

1-2-5-9-7-3-8-4 27 1,939 72 7.37%
1-2-5-9-8-4-1-6 25 2,039 82 4.76%

Table 3.1: Collected Data

They utilized features from device orientation data on an HTC Evo 4G smart

phone, and correctly inferred more than 70% of the keys typed on a number-only

soft keyboard. Very soon, Xu et al. further exploited more sensor capabilities on

smartphones, including accelerometer, gyroscope, and orientation sensors [109].

Evaluation shows higher accuracies of greater than 90% for inferring an 8-digit

password within 3 trials. Miluzzo et al. demonstrated another key inference

method on soft keyboard of both smartphones and tablets [75]. 90% or higher

accuracy is shown in identifying English letters on smartphones, and 80% on

tablets. Owusu et al. [82] infers taps of keys and areas arranged in a 60-region

grid, solely based on accelerometer readings on smartphones. Result showed

that they are able to extract 6-character passwords in as few as 4.5 trials.

C) User Authentication by Their Behavior on Touch Screens.

Research has been done in exploring different biometric approaches for provid

ing an extra level of security for authenticating users into their mobile devices.

Guerra-Casanova etal. [48] proposed a biometric technique based on the idea of

authenticating a person on a mobile device by gesture recognition, and achieve

Equal Error Rate (EER) between 2.01% and 4.82% on a 100-users base. Un

obtrusive methods for authentication on mobile smart phones have emerged as

an alternative to typed passwords, such as gait biometrics (achieving an EER

of 20.1%) [31,80], or the unique movement users perform when answering or

45

placing a phone call (EER being between 4.5% and 9.5%) [28].

Very recently De Luca et al. [30] introduced an implicit authentication ap

proach that enhances password patterns on android phones, with an additional

security layer, which is transparent to user. The application recorded all data

available from the touchscreen: pressure (how hard the finger presses), size

(area of the finger touching the screen), x and y coordinates, and time. Eval

uation is based on 26 participants, with an average accuracy of 77%.

A latest work conducted by Sae-Bae et al. [91] makes use of multi-touch

screen sensor on iPad (not phone) to capture the palm movement. They achieved

a classification accuracy of over 90%. However, palm movements is not suitable

for smartphone screens, since the screen is typically too small for palm move

ments. Citty et al. [24] presented an alternative approach to inputting PINs on

small touchscreen devices. It uses a sequence of 4 partitions of a selection of

16 images, instead of 4-digits PINs, to increase the possible combination of au

thentication sequences. However, inputting the sequence needs extra efforts in

memorizing the images sequences. Kim et al. [66] introduced and evaluated

a number of novel tabletop authentication schemes that exploit the features of

multi-touch interaction.

3.3 Measurement and Characterization

Over 80 participants are involved in our data collection. Five different PINs are

tested, in which three of them are 4-digit, and two are 8-digit. Here we choose

PINs 3-2-4-4, 1-2-5-9-7-3-8-4, and 1-2-5-9-8-4-1-6 to represent these normal

cases, but PINs 1-1-1-1 and 5-5-5-5 to represent the two extreme cases, one

at the corner and the other at the center, respectively. Each participant is asked

to enter an error-free PIN for at least 25 times and we collect a total of 11,062

error-free actions. The user’s timing and motion data are recorded during the

46

process. In this chapter, we refer to an action (or user input action) as the pro

cess of tapping one PIN, instead of individual digits. The detailed information of

the collected data is listed in Table 3.1.

(b) Two-Hand Typing(a) Application
Layout

Figure 3.1: Screen layout of our data collection application, and the two-hand typing action.

The timing information is in resolution of milliseconds. Occasionally, some

participants fail to make a smooth tapping intentionally or unintentionally. There

fore, we employ a simple outlier removal process to all the collected raw data.

An outlier tapping action is often signaled by a markedly longer-than-usual time

interval, especially for a user who is very familiar with its own PIN. In our data set,

a smooth PIN tapping action takes at most 600 milliseconds between subsequent

keys for all participants. As a result, an inter-key time of greater than one second

always signals such an outlier behavior. By this standard, a small amount of raw

data is filtered out, as listed in the right-most column of Table 3.1.

All the data are collected on a Samsung Galaxy Nexus. Its fastest sampling

rate on motion sensor readings is about 100Hz. Figure 3.1(a) shows the layout

of our Android application for the data collection. In the experiments, all the par

ticipants are asked to hold the phone with their left hands, and tap with their right

hand index fingers, as shown in Figure 3.1(b).

We make use of the Android APIs to detect the touch event, including both

key-press and key-release. Between each key-press and key-release, we record

raw data of timestamps, acceleration, angular acceleration, touched-size, and

47

of Dimensions

Feature Set Description 4-digit 8-digit
Acceleration Acceleration at TouchDown 8 16
(linear & Acceleration at TouchUp 8 16
angular) Minimum during key-hold time 8 16

Maximum during key-hold time 8 16
Average during key-hold time 8 16

Pressure Pressure at TouchDown 4 8
Pressure at TouchUp 4 8

Size Touched Size at TouchDown 4 8
Touched size at TouchUp 4 8

Time Key hold time 4 8
Inter-key time 3 7

Total All features 63 127

Table 3.2: Features of Touchscreen Tapping Behaviors

pressure. Acceleration and angular acceleration are from API SensorEvent, while

touched-size and pressure are from API MotionEvent.

3.3.1 Feature Extraction

Based on the raw data, we compute four sets of features for each PIN typing

action: acceleration, pressure, size, and time. We describe each of them in the

following:

• Acceleration: For each digit d in a PIN action, we calculate the five accel

eration values:

- Ady. the magnitude of acceleration when the digit d is pressed down;

- Ady. the magnitude of acceleration when the digit d is released;

- Ady, the maximum value of magnitude of acceleration during digit d

key-press to key-release;

48

Target User e
Impostors o
Boundary ——■ 5-------------

° ° o o
o 0 0 o o

° ° o ° o ° o
o ° ° o0 o o n o O '

° . a o ° oa° o Q
0 § <P° o ° . o

° ° 0 0 °0 0V ° 0 0 o 0 0 0
° 0 0° °o o°o - „ cto o" o ? n O? ° 0

O O

/X1

Figure 3.2: An illustration of two-feature space of a target user and many others. Xi and X3 are the two features.
The dashed lines define the boundary of the target user’s behavior. Because the target user’s behavior is limited to a
concentrated area, the boundary blocks the majority of potential impostors.

- AdA: the minimum value of magnitude of acceleration during digit d

key-press to key-release;

- Ad$\ the average value of magnitude of acceleration during digit d key

press to key-release.

All above values are the magnitude of acceleration ||a|| = y/a2 + a2 + a\.

We choose not to use individual components, because the phone coor

dinate system is sensitive to location change. A similar procedure is ap

plied to calculate the features from angular accelerations. Combining both

acceleration- and angular-acceleration-related features, there are total of 40

in a 4-digit PIN action and 80 in an 8-digit PIN action.

• Pressure: We obtain the pressure readings through Android API MotionEvent. getpressur

The returned pressure measurements are of an abstract unit, ranging from

0 (no pressure at all) to 1 (normal pressure), however the values higher than

1 could occur depending on the calibration of the input device (according to

Android API documents). In the feature set, we include pressure readings

at both key-press and key-release. There are 8 pressure-related features

for a 4-digit PIN, and 16 for an 8-digit PIN.

49

0

User
#2

0 500 1000 1500 2000
Time [ms]

Figure 3.3: Timing of tapping on the smartphone from three different users, shown in three vertical panels. Each user
typed 20 times of the number string “3244”. The solid dots represent key-press time, and the open dots are key-release
time. Different colors represent the timestamps of different digits.

• Size: Similar to pressure readings, another Android API call MotionEvent .getsizeO

measures the touched size, associated with each touch event. According to

Android document, it returns a scaled value of the approximate size for the

given pointer index. This represents the approximation of the screen area

being pressed. The actual value in pixels corresponding to the touch is nor

malized with the device’s specific range and is scaled to a value between

0 and 1. For each key-press and key-release, we record the size readings

and include in the feature set. A 4-digit PIN contains 8 size-related features,

and an 8-digit PIN contains 16.

• Time: key-hold times and inter-key time intervals between two nearby keys.

They are measured from the TouchEvent timestamps, of both TouchUps and

TouchDowns. Overall, a 4-digit PIN action contains 7 time-related features,

while 8-digit PIN contains 15.

For a 4-digit PIN, each action results in a total of 63 features; for an 8-digit

PIN, the number of features for one action is 127. Table 3.2 summarizes the

description of the above four feature sets.

50

3.3.2 Touchscreen Tapping Characterization

Our underlying assumption is that a user’s feature distribution should be clustered

within a reliably small range compared with many others. As a result, those met

rics can be exploited to block the majority of impostors, as illustrated in Figure 3.2.

Uniqueness of User Pattern

As described above, we define four sets of features in order to characterize a

user’s tapping behaviors on smartphones: acceleration (both linear and angu

lar), pressure, size, and time. All these features can be easily obtained from a

smartphone’s on-board sensors, and can accurately characterize a user’s unique

tapping behaviors. Based on the feature data, we observe that each user demon

strates consistent and unique tapping behaviors, which can be utilized for differ

entiating itself from other users.

Figure 3.3 shows the timestamps of entering the same PIN 3-2-4-4 from three

different users, including the moments of each key-press and key-release. Each

individual’s timing patterns clearly differ, but are very consistent within them

selves. This is similar to the observations on a regular computer keyboard [73].

In addition to timing information, motion data such as pressure, touched size,

and acceleration also reveal user-specific patterns. Generally speaking, acceler

ation is proportional to the tapping force applied to the touchscreen, while angular

acceleration represents the moment of force. Touched size is related to both user

finger size and tapping force. Figure 3.4 shows the tapping pressure from three

different users. We can see that three different users’ tapping pressure form dis

tinguishable individual patterns, with Subject #1 taps the hardest, Subject #2 taps

much more gently, and Subject #3 is gentlest. Meanwhile, the level of tapping

pressure is relatively consistent within one subject.

51

Subject#! (Trial #1) Subject *1 (Tria *2) Subject *1 (Trial #3)

Subject #2 (Trial #1) Subjact *2 (Tria *2) Sifcfect *2 (Trial #3)

Subjact #3 (Trial #1) Subjact t3 (Tria *2) SUbjact *3 (Tria *3)

Figure 3.4: Users' tapping pressure on smartphone touchscreen, while entering an 8-digit PIN 1-2-5-9-7-3-8-4. Each
figure shows pressure readings on a 3x3 smartphone number pad. Darker color indicates a larger tapping pressure.
Note that number "6" has no pressure because it is not in the PIN. Figures in the same row are from a same user while
typing the PIN for three times.

Dissimilarity Measures

We represent each user action as n-dimensional feature vectors, where n is the

number of feature dimensions. Using the dissimilarity score between two feature

vectors, we further verify if our extracted features of a user remain relatively stable

over multiple repetitions, in comparison with those of the other participants.

As the first step, we compute a target user’s template as an average feature

vector over its N PIN tapping actions, where N = 150 in our case. At the same

time, each feature’s standard deviation is computed based on these N actions.

In our approach, given a new biometric data sample, we evaluate its dissim

ilarity score from the target user’s template as follows. Suppose the new data

sample’s feature vector is X = {Xx, X 2, ...,XU ...,X„}, where X t represents the

ith feature dimension; and the target user’s template is represented similarly as

52

0.3

0.25

0.2£
2

0.15
i
CL Target user

Other 52 users 1"'ZTJ

0.05

2 31 4 5 6

Dissimilarity Score

Figure 3.5: Distribution of dissimilarity score of typing 3-2-4-4 from a target user's template, to both the target user Itself
and other 52 users.

0.3

0.25

0.2

2s 0.15
2
Q.

0.1

0.05

0

Target user
Other 26 users

1 2 3 4 5 6

Dissimilarity Score

Figure 3.6: Distribution of dissimilarity score of typing the 8-digit PIN 1 -2-5-9-7-3-8-4 from a target user's template, to both
the target user itself and other users.

T = { f u f 2, ...,Tn}. The dissimilarity score is the accumulated deviation from

the two vectors over all normalized features:

D(X, T) = £
X , - T ,

(3.1)

where denotes the standard deviation of the tth feature over the N trials in

obtaining the target user’s template. By dividing oit we give higher weights to

those features that have smaller variation within the target user, because they

more reliably reflect the target user’s specific pattern. This is a standard proce

dure mostly seen in outlier removal (also known as standard score or z-score in

statistics [98]).

Figures 3.5, 3.6, and 3.7 show the distributions of dissimilarity scores, calcu

lated from a target user’s template entering three different PINs, respectively, to

53

£
2

Target user
Other 24 users

2 3 4 5 6

Dissimilarity Score

Figure 3.7: Distribution of dissimilarity score of typing another 8-digit PIN 1-2-5-9-8-4-1 -6 from a target user's template, to
both the target user itself and other users.

both the target user itself and the rest of other users. It is clear that in all three

PINs, the dissimilarity scores to the target user itself is highly concentrated on the

lower end, indicating a high similarity to its own behavioral template. Meanwhile,

the dissimilarity scores of other users are dispersed and located on the higher

end. For the 4-digit PIN 3-2-4-4 (Figure 3.5), there is a small overlap of the tar

get user itself with others. It implies that only few members among the other 52

users behave similarly to the target user, and may be misclassified. For the two

8-digit PINs (Figures 3.6 and 3.7), the target user’s and others’ distribution curves

are completely separated with a clear gap in between. Likely this is because an

8-digit PIN action contains more cognitive information that is user-specific than a

4-digit PIN action.

3.4 Classification

The system architecture of our approach consists of a feature module, a classi

fier module, and a decision maker module as shown in Figure 3.8. Firstly, raw

data are recorded during user’s tapping actions. Then, four sets of features are

calculated and fed into the classifier, which derives a decision score featuring its

similarity to the target user’s template. The decision score is used by the deci

sion maker to make a final decision, with respect to a predefined threshold value.

54

Features

S I User Input Time
Target User?Decision Score Decision

Maker
ClassifierAcceleration Impostor?

Pressure

Size

Figure 3.8: System Architecture

The final decision is to label whether an user tapping action is originated from the

target user or an impostor.

User behavioral pattern can be derived from either one-class or two-class

learning. In this chapter, we study both of the classification schemes. In one-

class learning, only the target user’s data is needed in training phase; but the

learnt model can be applied to classify both the target user or an unknown impos

tor. Additionally, if other users’ data are available, together with the target user’s

own data, we can conduct a two-class learning. One-class learning is straightfor

ward and more practical because it does not involve other users’ data, but with

lower verification accuracy. For a two-class classifier, device manufacturers could

pre-load some anonymized user data into smartphones before shipping them to

their customers. With the pre-load anonymized user data, two-class classifica

tion is also feasible to perform in practice and can achieve higher verification

accuracy. In the following sections, we describe both one-class and two-class

learning process of our approach in detail.

3.4.1 One-Class Learning

Our one-class learning process consists of the enrollment and testing phases. In

enrollment of a target user /, taking its N input actions, we calculate the standard

deviations of every feature as Oj for the jth feature. In the testing phase, given

an unknown sample as n-dimensional feature vector X Q, its distance from each

55

of the N feature vectors in the enrollment phase is calculated as:

d(XQ, X i) = ' £ ^ S J z J M i j = (3.2)
1 Gj

where X Qij is the jth feature of feature vector X Q, and X hJ is the jth feature of

the ith feature vector in the enrollment phase. Following this, the distance of X Q's

nearest neighbor dmin(XQ, I) will be chosen as the dissimilarity measurement to

the target user’s template. The underlying assumption is that if X Q belongs to the

target user, it should have a short distance to its nearest neighbor in the target

user’s data. And if dmin{XQ, I) is below a pre-defined threshold value, it is labeled

as from the target user; otherwise, it is labeled as from impostors. Implementation

wise, setting a large threshold value means a higher probability of recognizing

the target user, but allowing more impostors slip through. A small threshold value

strictly blocks out impostors, but may falsely reject the target user.

3.4.2 Two-Class SVM for User Verification

Here we adapt user verification as a two-class problem: one class includes the

behavioral features of the target user, and the other class denotes the features

of other users. We choose support vector machines (SVM) as our two-class

classifier, due to its good accuracy and efficiency in various applications including

face recognition [87], text categorization [57], and image classification [81].

In our implementation, we utilize the open source SVM package LIBSVM

3.12 [18] to perform all the two-class classifications. LIBSVM is an integrated tool

for support vector machine learning. The default Radial Basis Function (RBF)

kernel is used as the kernel function and cross-validation is applied to find the

best parameters C and 7 .

In training, feature vectors from the target user are labeled as negative (-1),

and those from others are labeled as positive (+1). In testing, given a feature

56

v

vector from an unknown user, the SVM classifier outputs a decision score, which

evaluates how probable the unknown features are from the target user. By default,

LIBSVM will predict those with a negative decision score as negative cases, i.e.,

indeed from the target user; otherwise, positive decision scores lead to positive

cases, and will be labeled as impostors.

Again, similar to one-class learning, a threshold value can be added to tune

the classifier towards either the target user or impostors, based on the decision

scores. Setting a positive threshold makes a strict classifier, i.e., very sensitive to

anomalous behaviors; while setting a negative threshold will tolerate more on the

target user’s behavioral changes, but less effective in blocking impostors. We will

discuss the tradeoff of setting the threshold in the next section.

3.5 Experimental Evaluation

Generally, the accuracy of a biometrics-based authentication is evaluated by the

following error rates:

• False Reject Rate (FRR) — the probability that a user is wrongly identified

as an impostor;

• False Accept Rate (FAR) — the probability that an impostor is incorrectly

identified as a legitimate user.

The point at which both FAR and FFR are equal is denoted as the Equal Error

Rate (EER). The value of EER can be obtained by tuning a certain threshold until

FAR and FAR are equal.

A formal description of a biometric-based verification system is summarized

as [55]: given an unknown sample to be verified towards a target user I , its

feature vector X Q is compared with the target user’s template X {. A dissimilarity

score D(Xq, X[) is calculated, where D is a function that evaluates the dissimilar

ity between two feature vectors. The dissimilarity function D varies with different

57

methods of classification. Finally, a threshold value t is set to determine if X Q is

from the target user or an impostor:

target user, if D(X q , X j) < t

impostor, otherwise

This structure applies to both one-class and two-class learning described in

Section 3.4. The only difference is their dissimilarity functions D. Tuning the

threshold would give the classifier a preference towards either the target user

or the impostors, thus reducing one error rate while increasing the other. An

illustration of the tradeoff between FRR and FAR, by tuning the threshold value is

presented in Figure 3.9.

We can see in Figure 3.9 that as the threshold value is tuned along the X-

axis, the outputs (shadow areas) favor either security or user convenience. For

security-critical applications, one might want to have a guaranteed zero percent

FAR. It means even at the cost of inconvenience to legitimate users, no impostor

is able to get in. This kind of system should tune the threshold at the borderline

of the minimum dissimilarity of the impostors’ data. On the other hand, for log

ging into non-security-critical applications, or in a situation that security is less

concerned such as at home, usability is more important than perfect impostor

rejection. This kind of system should tune the threshold at the borderline of the

maximum distance of the target user’s data. Because our approach acts as a

second factor authentication, which supplements the passcode-based mecha

nisms for higher assurance authentication in a cost-effective fashion, we focus

more on being user-transparent and user-friendly while enhancing the security of

PIN-based authentication.

In the following, we present the evaluation results of both one-class and two-

class verification systems, along with the effect of threshold and number of ac-

58

Target user
distribution

Threshold (t) Impostor
distribution

1
2
Q_

FRR
FAR

Dissimilarity score OO-OO

Figure 3.9: An illustration of tradeoff between FRR and FAR by tuning the threshold [55].

tions in training, the comparison with different combination of PINs, and the as

sociated system overhead.

3.5.1 One-Class Verification Accuracy

There are two parameters that affect the accuracy in one-class learning: the

number of actions in training, and the threshold.

By increasing the number of actions in training, user behavioral patterns be

come more precise since more actions yield a higher statistical significance. Fig

ure 3.10 shows that the averaged equal error rate (EER) decreases as more

user actions are included in training. All five PIN combinations present similarly

shaped curves, while the results of 1-1-1-1 and 5-5-5-5 are less accurate than

those of 3-2-4-4 and the two 8-digit PINs. From lower accuracy of 1-1-1-1 and

5-5-5-5, it seems that a PIN number with higher repetition of digits reduces the

difference in individual users’ tapping behaviors, leading to a less accurate verifi

cation result. Moreover, for all five PINs, the accuracy remains on a similar level

after 20 user actions. This implies, as more user actions are added in training,

there is a diminishing gain in accuracy. For example, increasing user actions from

20 to 40 requires twice the time waiting for user input, but only limited accuracy

increase is seen.

59

12

3 -----■ ■----- ■ i ■----- ■ ‘ 11
10 20 30 40 50 60 70 80

Number of User Actions in Training

Figure 3.10: Variation of average EER with number of user actions in one-class training for five PIN combinations.

FRR (3-2-4-4) — ■ —
FAR 13-2-4-4) ~ -& ~ -

FRR (1-2-5-9-7-3-8-4)•
FAR (1-2-5-9-7-3-8-4) — « —
FRR (1-2-5-9-8-4-1-6) — * —
FAR (1-2-5-9-8-4-1-6) A - -

0.5 1 1.5 2 2.5
Threshold

Figure 3.11: Variation of FRR and FAR with the value of threshold for 3-2-4-4 and the two 8-digit PINs for one target user.

The second column of Table 3.3 further lists the exact values of averaged

EER, with its standard deviation in parenthesis. In computing EERs, there are 85

user actions included in the training process. As shown in Figure 3.11, in all three

PIN combinations, there is a trade-off between FRR and FAR.

As mentioned earlier, four sets of features are included: acceleration, pres

sure, size, and time. To measure how the four sets of features contribute to the

final accuracy, we make four additional rounds of classification, solely based on

each feature set. Figure 3.12 shows the accuracy results for the four individual

feature sets, as well as those of combining them all together.

It can be seen from Figure 3.12 that, the combination of all four feature sets

always outperforms individual feature set, as it is always with the smallest EER in

60

PIN EER (One-Class)a EER (Two-Class)a
3-2-4-4 3.65% (3.58%) 3.68% (4.38%)
1-1-1-1 6.96% (6.01%) 7.01% (6.45%)
5-5-5-5 7.34% (5.38%) 5.27% (3.69%)

1-2-5-9-7-3-8-4 4.55% (6.23%) 3.21% (4.89%)
1-2-5-9-8-4-1-6 4.45% (4.15%) 4.51% (3.45%)

awith standard deviation in parenthesis

Table 3.3: User Verification Accuracies

Size r .TO3
Time t r .w j

Acceleration csma
Pressure —

All-Together ■ ■ ■

PIN Number

Figure 3.12: Comparison of performance from each feature set in one-class learning, as well as when they are combined
together.

all different scenarios. This is because the four feature sets capture the different

aspects of user tapping behaviors, and having them all together should most

precisely represent who the target user is. Meanwhile, among the four individual

feature sets, acceleration, pressure, and time perform similarly well and achieve

more accurate results than size.

3.5.2 Two-Class Accuracies

Unlike one-class learning, a two-class classifier is trained on both the target user’s

and other users’ data. Our experimental results show that two-class classifiers

usually yield higher accuracy than one-class. Thus, if others’ data are available

to the target user, the two-class classifier can be an optional implementation

to achieve higher accuracy. In fact, this can be done by devices manufactures

or mobile OS providers (e.g., Google) to pre-load the two-class classifier with

61

anonymized user data for training purpose.

In training an SVM classifier, 50 of the target user’s actions are input as neg

ative cases, and 50 of others' actions (randomly selected from our data set) are

input as positive cases. The classifier is tested on the rest of the target user’s

actions and the other users’ data. We make sure that there is no overlap be

tween impostors in training and testing. In this way, the classifier aims to detect

unknown impostors outside the training set.

Accuracy Vs Number of Users in Training

100

95

90

85
True Accept hate
True Reject Rate

80
2 4 6 8 10 12 14 16 18 20

Number of Users In Training

(a) Accuracy Vs Number of Users in Training

Accuracy Vs Number of Users in Testing

True Reject Rate —• — I
! True Accept Rate a 00%

105

100

95

90

85

80
2 4 6 8 10 12 14 16 18 20

Number of Users in Testing

(b) Accuracy Vs Number of Users in Testing

Figure 3.13: Variation of Accuracies with number of users in training and in testing.

Figure 3.13(a) shows the dynamics of accuracy under the different number of

other users (i.e., potential impostors) in training, in terms of true reject rate (TRR)

and true accept rate (TAR). For easy presentation, we use ’’impostor” and ’’other

users” exchangeably in the following part of this section. The error bars show

62

0.8

FBW ̂ - m FAR - t-r| “
| 0.4

i 0.8

0.2 0.2

3 ■3 -2 ■1 0 2 3

(a) 1-1-1-1 (b) 3-2-4-4

0.8

i °-6
| 0.4

0.2

-3 2 0 1 2 3■1

(c) 5-5-5-5

Figure 3.14: Trade-off between FRR and FAR in typing three 4-digit PINs: 1-1-1-1, 3-2-4-4, and S-5-5-5.

£
EC

UJ
re3
I?

10

8

6

4

2

0

une-Class i........ J
Two-Class mmm

/, dy, d> t PIN Number

v VT v $ »
%<S> V V '<P

Figure 3.15: Comparison of accuracies between one- and two-class learning. Lengths of error bars show the standard
deviation of EER over users.

standard deviations over different combinations of the impostor set. We can see

that more other users involved in training leads to a higher and more stable TRR

(the rate of detecting an impostor). In the mean time, TAR stays relatively on the

same level, regardless how many other users are involved in training.

Besides the number of training impostors (i.e., other users in training), we

63

also evaluate the verification accuracy with respect to the varying number of test

ing impostors. Figure 3.13(b) shows the dynamics of accuracy under the different

number of impostors in testing, in terms of true reject rate (TRR) and true accept

rate (TAR). Again, the error bars show standard deviations over different combi

nations of the impostor set. With a larger impostor pool in testing, the average

value of TRR stays similar, while its fluctuation getting smaller. It indicates that

our method is robust in detecting a large pool of potential impostors.

Similar with the one-class classifier, there is also a trade-off between FRR

and FAR in the two-class approach. Figures 3.14(a), 3.14(b), and 3.14(c) show

the trade-offs between FRR and FAR in entering three different 4-digit PINs by a

target user, respectively. We can see that by tuning the threshold value, one of

the error rates decreases at the cost of increasing the other one.

The third column of Table 3.3 shows the averaged EERs for the two-class clas

sifier, and Figure 3.15 visually compares the accuracy results with those of the

one-class approach. While the two-class classifier achieves the similar accuracy

as the one-class classifier in three scenarios, it clearly outperforms the one-class

classifier in the other two scenarios.

3.5.3 System Overhead

In our implementation, the verification system is entirely built on a smartphone.

As a stand-alone system, there is only a single user present for verification at

any given time. There is no communication overhead associated with our user

verification.

We first estimate the memory overhead of the verification process. The ver

ification process is profiled using the Android SDK tool DDMS, and we find out

that it only consumes 11.195 MBytes of heap memory during a one-class test

ing process. The computational overhead is the sum of CPU costs in raw data

processing (calculating features) and detecting (including classifying and deci-

64

Uw #1: Dte#*mltortty Scotm In Various Ifcpplng PotMont
t-f-1-1 U 4 4 1444*7444

01 1 14 I U 1 U 04 111 I U I M 01 I 11 I U I U 04 11J t U I U U 1 11 I U I U 4

Utar#2: DMmHftrfty So o t m in Vkrious Tipping JdiWon*
M*M #444 14447444

XIX# > IOC !X> (

04 1 II I U I 01 1 11 t U I 01 1 11 1 U 1 M 1 1 1 1 II I (I 1 II I M l tt

Figure 3.16: Dissimilarity scores from one tapping position (i.e., one-handed while sitting) to the other two tapping positions
of a same user. Upper and lower panels are for the two different users, respectively.

sion making). The pre-processing on one user input action of a 4-digit PIN takes

only 0 .0 2 2 seconds. The detecting process takes another 0.474 seconds, where

the major part lies in finding the nearest neighbor from all 85 reference feature

vectors. The CPU cost is measured on a Samsung Galaxy Nexus, using two

Date.getTimeO utility call at the beginning and end of the running time. Overall,

the induced computational overhead is minor on the smartphone. In terms of disk

space for storing user template, the signature of a single user profile generated

by the training process consumes only 150.67KBytes. It is very affordable on an

entry-level smartphone, let alone high-end models.

3.6 Additional Issues in Reality

3.6.1 Multiple Positions

So far we only measure the user tapping behaviors in a given position. How

ever, it is quite possible that a user types in its passcode under different positions

(e.g., single handed using the thumb). To handle different input positions, we can

measure and store multiple behavioral patterns for different positions during the

training period. The rich sensors equipped with smartphones allow us to easily

detect the physical position of the device and choose the appropriate behavioral

65

pattern for verification. For example, accelerometer readings straightforwardly

signal if a user is in a moving or non-moving status. And gyroscope readings can

even infer the user’s hand position (one-handed vs. two-handed) when tapping

on the smartphone, as shown in a recent study [46].

To explore on multiple tapping positions, we further conduct two more sets of

empirical measurements. First, we collect data with only one-handed tapping,

which is in parallel with the two-handed case in Section 3.5. In one-handed tap

ping, the phone is held in one hand, and tapped with the thumb finger of the

same hand. Due to the use of a different finger, the one-handed tapping behavior

is different from that of two-handed. However, with the one-handed data set as

the training data, we perform the same evaluation process as in Section 3.5 and

achieve an average EER of 3.37% over all PINs in the on-handed case, indicating

the effectiveness of our approach just like in two-handed tapping.

In addition to different hand positions, there are also various body positions a

user would switch from time to time. While tapping its passcode, a user can be

sitting, standing, or even slow walking. It is desirable to see how different body po

sitions affect a user’s tapping behavior. To answer this question, we carry out an

additional experiment with two users, who tap in PINs with three body positions:

sitting, standing, and walking. Using the trained model with one-handed tapping

while sitting as the baseline, Figure 3.16 shows the dissimilarity scores to three

different tapping positions, sitting, standing, and walking. Our major observation

is that: as long as the user remains static, its tapping behaviors are similar under

different body positions. Note that we do not intend to cover all possible tapping

positions in different environments (which is almost impossible), but instead to

draw some insights based on the common scenarios.

Our approach will work well for different input positions: sitting or walking,

single-handed or two-handed. The challenge is merely to increase the training

period and cover different input positions with more feature sets, which will im-

66

Figure 3.17: Effect of mimic attack shown in degree of dissimilarity from the target user. Subfigures, from left to right,
correspond to all features considered, and each individual feature set (acceleration, pressure, size, and time). There are
two mimic “impostors", and 10 trials before and after their observations on the target user.

pose a larger memory and CPU overhead in verification. However, we could

further reduce the system overhead by optimizing the classifier implementation

from different aspects of mobile devices. Note that the current one-class clas

sifier has not been optimized. We will further explore this direction in our future

work.

3.6.2 Mimic Attacks

Theoretically, our behavior-based verification system can be bypassed if an im

postor can precisely mimic the tapping behaviors of the device’s owner. However,

this is extremely difficult if not impossible in practice. Intuitively, even if the im

postor has overseen how the device’s owner previously entered the passcode, it

might be able to mimic the timing aspect. But the other features, such as pres

sure, acceleration, and size, are much more difficult to observe and reproduce.

In order to quantitatively measure the effect of mimic by observation, we set

up an experiment involving three users. One of them is the target user who is

observed closely by the other two “impostors" who try to mimic the target user’s

tapping behaviors. Impostor #1 has the same gender and similar hand/finger size

as the target user, while impostor # 2 has different gender and larger hands/fingers

than the target user. The goal is to see how physiological differences can impact

the outcome of mimic attacks. Before mimicking, the two impostors closely ob

serve (over the shoulder) how the target user tapped in the PIN 3-2-4-4 for 10

times each. They are also guided to especially pay attention to the four features

67

in our approach, i.e., tapping rhythm, acceleration, pressure, and touched size.

Figure 3.17 plots the dissimilarity scores from the target user’s model to the

two impostors before and after their mimic trials. The leftmost subfigure corre

sponds to all features included, and the rest four correspond to individual contri

bution from the four different features, respectively (acceleration, pressure, size,

and time). Our experimental results clearly show that there is no significant im

provement in mimicking given the behavior observation. Taking all four features

into account, it is evident that a mimic attack is very hard to succeed. For each in

dividual feature (acceleration, pressure, size, and time) shown in Figure 3.17, we

can see that only the dissimilarity scores of acceleration are consistently reduced

(i.e., its score range shifts towards that of the target user after observation). How

ever, for the other three features (including pressure, size, and time), out of the 1 0

mimic attempts, just one or two trials may be slightly closer to the target’s model,

but their score ranges spread even wider. Thus, the behavior mimicking does not

increase the chance of evasion with respect to these three features. This some

what contradicts our intuition that timing would be easier to mimic than the other

features.

With the experimental results shown in Figure 3.17, we believe that the ro

bustness of our approach against a mimic attack mainly lies in the following three

aspects.

• There are multiple dimensions in the features we used and most of them

are independent from each other. Although an impostor may mimic one

dimension without much difficulty, mimicking multiple dimensions simulta

neously is extremely difficult as small physical movements like tapping are

hard to observe and precisely reproduce. For example, acceleration directly

relates to tapping force {F = m ■ a), so if the impostor intentionally manages

to tap in a gentler or harder fashion, its behavior can get closer to that of

the target user. However, pressure is harder to mimic because it equals

68

to tapping force divided by touched area. These two independent factors

must be adjusted at the same time, which is more challenging. Timing (or

tapping rhythm) is also hard to mimic, because timing contains multiple di

mensions in our approach: 7 in a 4-digit PIN, and 15 in a 8 -digit PIN. Those

individual time intervals (especially key-to-key intervals) are relatively inde

pendent. An impostor may mimic the target user with a roughly fast or slow

rhythm, but it is hard to reproduce the specific key-to-key dynamics.

• The fine-grained measurement resolution makes our features hard to mimic.

For example, in our experiment, timing is measured in order of millisecond.

This time resolution is much higher than human perception, and hence it

is very hard for an impostor to accurately and consistently mimic tapping

rhythm at such a low-level resolution.

• The physiological differences from the target user set up another barrier for

mimic impostors. In our feature set, the touched size is heavily affected

by the finger size, and the tapping rhythms also depend on hand agility

and geometric shape. In general, it is very difficult for a person with bigger

hand/fingers to mimic someone with smaller hand/fingers, and vice versa.

As more sensors have been available on mobile devices, more features will

be included for more accurate user verification, and hence mimic attacks will just

become less likely to succeed.

3.6.3 User Behavior Changes

This work builds on the assumption that a user’s behavior is consistent and no

abrupt change happens over a short period of time, but the assumption might not

always be true, e.g., due to a physical injury. In such scenarios, the behavioral-

based verification mechanism should stay minimally intrusive to the user. One

feasible solution is to contact with the service providers to disable the verification

69

function remotely and start the re-training. The purpose of our user verification is

to provide additional security in common day-to-day usage while still allowing the

user to disable it in rare cases. As we have shown previously, the sensitivity to

false positives and negatives are controlled by various threshold values. Whether

or not exposing the sensitivity control, e.g., setting it to Low, Medium, and High,

can improve user experience is debatable. On one hand, it allows users to make

a conscience choice to trade off between security and convenience. On the other

hand, it is no longer user-transparent.

3.6.4 Passcode Changes

In our approach, only the tapping features of the currently active passcode are

measured and recorded in a user’s smartphone. One might ask what happens

when the user need to change its passcode? Although people do not frequently

change their passcodes, updating passcode in a quarterly or yearly basis is rec

ommended or required by most passcode-based systems. When this happens,

our verification system could automatically remain inactive for a while and start

another training session to build a new set of tapping features based on the newly

created passcode. The characterization of tapping features are conducted in

background till a stable pattern has been successfully compiled after multiple

trials. Note that the methodology of our scheme is not bounded to certain pass

codes. In other words, our approach can be applied to any passcode a user

chosen in practice.

3.7 Conclusion

As mobile devices are getting widely adopted, ensuring their physical and data

security has become a major challenge. A simple peek over the shoulders of the

device owner while the passcode is being entered and a few minutes of hiatus

70

would allow an attacker to access sensitive information stored on the device.

Using more complex passcodes and/or secondary passcodes can reduce the

chance of such attacks, but it brings significant inconvenience to the users. We

found that a user’s tapping signatures if used in conjunction with the passcode

itself can also achieve the same goal, and moreover, the added security can be

obtained in a completely user-transparent fashion.

Previous works have shown the feasibility of this approach, but their high er

ror rate makes these mechanisms impractical to use as too many false positives

will defeat the purpose of being user-transparent. Having collected data of over

80 different users, explored both one-class and two-class machine learning tech

niques, and utilized additional motion sensors on newest generation of mobile

devices, we are able to demonstrate accuracies with equal error rates of down to

3.65% for 4-digit PINs, and 3.21% for 8 -digit PINs.

71

4 Exploring Fitts’ Law in Web Brows

ing

In this chapter, we describe our work on applying Fitts’ Law to model natural

web browsing behaviors from end users. The chapter is organized as follows.

Section 4.1 describes the background of Fitts’ law and web browsing behavior,

and surveys related work. Section 4.2 details our data collection and processing.

Section 4.3 evaluates the validity of Fitts law under natural web browsing, along

with its proposed error model. Section 4.4 discusses several Fitts’ law related

issues. Section 4.5 concludes the chapter.

4.1 Background and Related Work

A large number of research works have been conducted to learn web brows

ing behaviors, with the goal of measuring user interests [17,68,94], web page

quality [97], search quality [1,52], predicting user demographic [51], and provid

ing personalization [101]. The existing studies are heavily based on information

of pageview activities, including pageview paths, time spent on webpages, fre

quencies of webpage visiting, etc. By contrast, in this chapter, we explore human

browsing behavior from a different perspective: the kinetics of user point-and-click

actions in web browsing. Our work is useful in complementing previous works to

better model user browsing behavior in a more comprehensive manner.

72

We focus on studying Fitts’ law, one of the most influential laws in human-

computer interaction research for decades. Essentially, Fitts’ law reveals the

length of time it takes to perform a task with a pointing device such as a mouse.

For instance, how long does it take to move the mouse cursor to a particular po

sition on the screen. It is expressed as in Eq. 1 .1 . The significance of Fitts’ law

is that it provides quantitative information regarding the accumulated time of mul

tiple perceptual-motor feedback cycles for users to interact with a system using a

pointing device.

Fitts’ law is closely related with several theories on submovement analysis,

and the major ones, in chronological order, consist of, the iterative corrections

model [29,61], the impulse variability model [92] (also known as the Schmidt’s

law), and the optimized initial impulse model [74] (also known as the Meyer’s

law). A comprehensive review of the three models can be found in [89]. The

first two models emphasize on either solely feedback control or solely initial im

pulse, while the third model (the Meyer’s law) combines these two views, and

gave a satisfactory explanation supported by empirical evidence. Therefore, the

underlying message from Fitts’ law is an optimal planning of human motor-control

bounded by speed-accuracy tradeoff1. In another word, even in a task as simple

as reaching for a target, human motor skill automatically balances the speed and

accuracy in an optimal way, with an outcome of target-reaching both accurately

and rapidly.

Note that Schmidt’s and Meyer’s laws can serve as independent models for

pointing actions, and they are closely related to Fitts’ law. The former is for rapid

pointing, and the latter constitutes a more generalized law (combining both Fitts’

and Schmidt’s laws). However, in terms of application, Schmidt’s and Meyer’s

laws require submovement analysis at low level, while Fitts’ law only involves

measurements (i.e., total movement time, total distance, and target size) without

1ln presence of speed-accuracy tradeoff, one cannot accurately aim for a target with no error
while moving extremely fast.

73

Start position

Circle of error for second try

Circle of error for first try
Target center

Figure 4.1: Step-wise movement towards target [35]

any submovement-level variables. Therefore, due to its simplicity and ease-of-

use, along with its success in many aiming-related experiments [6,54,62,63,69,

89], we have chosen Fitts’ law as the focus of this study, instead of the other

laws. And our objective is to specifically verify if Fitts’ law alone is applicable

for modeling daily pointing actions with computer mice in a natural web browsing

environment.

Here for simplicity, we present the first model, i.e., the iterative corrections

model, proposed by Crossman and Goodeve [29] in 1963. This is not a perfect

model in itself, but it especially reveals how the logarithmic term in Fitts’ law came

from perceptual-motor feedback loops. Figure 4.1 shows how the movements in

each step get gradually smaller as the target gets closer, involving discrete cycles

of sensing and movement [35].

It is assumed that each of submovement reduces the distance to the target

geometrically, that is, it moves a constant fraction 1 - r of the remaining distance.

Each of them takes the same time t. When remaining distance is such that the

error circle of the remaining movement is less than the size of the target then we

get inside the target. When the target has been reached:

74

Solving for N:

1 , 2A
log2l / r ° g2W

The time required for completing all submovements are:

T Nt log2 l / r + log21/r l0g2 W'

This especially explains the logarithmic term in Fitts’ law.

A large body of prior works have been dedicated to Fitts’ law, since it was first

proposed in 1954 [39], Seminal works in the HCI (human-computer interaction)

community include [15], [96], [108], [113], etc. However, only a few of existing

literatures concern with real-life pointing behaviors, based on unobtrusively col

lected data.

Chapuis etal. [20] are among the first to notice the need to stress-test Fitts’ law

in natural GUI settings. They questioned if one can apply the Fitts’ law obtained

from controlled laboratory experiments to characterize the pointing activities “in

the wild”. Their underlying motivation is the same as ours, pointing "in the wild”

involves far more cognitive processes than in a controlled laboratory setting, such

as deciding what is the target, coping with possible interference from the field

environment or planning for higher-level tasks. In their field study of 24 users, the

results indeed deviate from those in controlled laboratory environments.

Slijper etal. [95] applied Bayesian statistics to model hand movements, drawn

from a large-scale collection of users’ daily mouse movements. Human arm

movements are found to be strongly correlated to prior experience, making them

predictable via Bayesian statistics analysis. Thus, Slijper et al. achieved their pri

mary goal, which is to predict hand moving directions by utilizing the directional

distribution.

Hust et al. [53] conducted another field study on the evaluation of real-life

pointing performance for motor-impaired people. High variance is found within

75

each participant, implying that it is insufficient to measure performance based

on a single laboratory session. However, as target width and distance are not

captured in the data collection, the theme of their study is not focused on the

evaluation of Fitts’ law. Moreover, since the experimented subjects are with mo

tor impairments, it is unclear if a healthy person will still display considerable

variance.

More recently, the differences between the natural and laboratory controlled

mouse movements are further acknowledged in Gajos et al.'s work [44], They

found that, many of those mouse pointing movements “in the wild” are affected

by extraneous factors, which include, for example, deciding what task to perform

next and searching for the right user interface element. Motivated by this ob

servation, the authors unobtrusively collected mouse pointer trajectories from 18

participants. A classifier is then trained to discriminate between deliberate, tar

geted mouse pointer movements and those movements that are distracted.

Meanwhile, Evans and Wobbrock [38] developed the Input Observer, a novel

tool to passively collect user input data, from which they measured both text en

try and mouse pointing performance “in the wild”. With regard to pointing per

formance, the authors carefully measured target size and pointing errors by uti

lizing crowdsourcing. In the process of raw pointing data, a novel segmentation

technique is employed to identify each trial, and further, outlier removal is used

to damp the noise. As a result, the pointing performances “in the wild” are mea

sured to be very close to that from laboratory studies, in terms of average pointing

error, movement time, and throughput. However, in their work, only a small sub

set of collected data (- 1 1 % of pointing data) are considered in order to obtain

laboratory-quality results; by contrast, in this chapter, as our goal is to see if Fitts’

law works well in regular web browsing activities, there is minimal data filtering

done.

Overall, our work significantly differs from these previous works in terms of

76

scale. Whereas the largest data set of the previous studies includes 24 volunteer

users, our study involves two orders of magnitude more human users. There are

more than 1,000 participants who are real-world Internet users, and their pointing

actions are recorded while using a web browser. Moreover, we solely focus on

pointing behaviors in web browsing, while the previous works study pointing data

from many different applications at the client side.

4.2 Data Collection

This work includes two different data sets, obtained under two different circum

stances, for the purposes of two different types of measurements. The data sets

are described below, followed by an explanation of how the data is processed into

a meaningful form.

4.2.1 Data Sets

In order to assess Fitts' law in a real-world setting, we first collect data outside of

controlled laboratory conditions. More than 1,000 unique Internet users' mouse

movements are recorded by JavaScript code embedded on a web forum 2 , and

submitted passively via AJAX requests to the web server. Figure 4.2 shows the

layout of the website homepage. Based on the vBulletin template, the webpage

has a simple outlook comprised of text links stacked vertically. Icons and im

ages are present too, but not visually prominent as text links. It is impossible to

know about online users’ biographical information (gender, age, education back

ground), and there is no guarantee on the amount of data collected for a certain

user (a forum user could be logged in for a long time with frequent mouse ac

tivities, or could perform just one click and then leave). On the other hand, the

2 The website is generated from vBulletin forum software, and has a similar layout as https: //
ww.vbulletin.com/iorum/forum.php. In addition, we do not argue that this is a representative
website, but it suffices as a case study for exploring the Fitts' law in the wild.

77

Figure 4.2. Layout of the webpage for data collection. Text links are highlighted by red boxes.

breadth of this corpus represents a large sample of real Internet users browsing

naturally, as they were free to browse webpages without being interrupted. Thus,

it is ideal for studying how well Fitts’ law models natural pointing behavior when

using a web browsing application.

The second data set is collected to study the effect on Fitts' law of pointing

actions using different pointing devices. This data collection is conducted in a

controllable environment. Ten people are invited personally to participate in the

second set of data collection. They use two different pointing devices, mouse

and touchpad, to interact with GUIs. During the data collection, the users’ activ

ities are performed naturally without any interference. Their pointing actions are

recorded using the RUI tool [67].

4.2.2 Data Processing

The raw mouse movements are represented as the tuples of timestamp and

Cartesian coordinate pairs. Each tuple is in the form of (a c t io n - ty p e , t, x, y, t a r g e t - t y p e) ,

where a c t io n - t y p e is the mouse action type (a mouse-move or mouse-click), t

is the timestamp of the mouse action, x is the x-coordinate, y is the y-coordinate,

and t a r g e t - t y p e is the type of clicked target (a text link, text, image, or form

element). All timestamps are collected in milliseconds, and coordinates in pixels.

These raw data points then are further processed to extract the pointing ac

tions. Here we choose to consider only point-and-click actions with a text link tar

get, because the overwhelmingly dominant majority of pointing targets in the fo

rum website are text links. A point-and-click is defined as a continuous movement

followed by a click. A continuous movement is defined as a sequence of move

ment with little to no pause between the beginning and end of the movement.

Here “little to no pause” means that the time lapse is less than 100 milliseconds

between any two adjacent mouse records. Here 100-millisecond is an empirical

threshold, which is roughly the shortest time scale of human perception [16]. The

time for a point-and-click action is measured from the first mouse-move event to

the last mouse-move event. In our data collection algorithm, raw mouse records

are only generated with either mouse-move or mouse-click events. Therefore,

with respect to a pointing action with multiple pauses, as long as the period of

zero-velocity is less than 1 0 0 ms (which is true in most cases), multiple submove

ments are still preserved as one point-and-click. We only choose point-and-click

actions because a movement that ends in a pause (rather than a click) could just

be the user idly “shaking” the mouse cursor or moving it out of the way on the

screen. These types of actions do not have a definite target, so they are not cov

ered by Fitts’ law. Conversely, if a user clicks at the end of the movement within

a web browser, highly likely it is clicking on a text link at the forum website, and

thus we can assume that the pointing action has an aiming target—the text link.

Note that our collected pointing data are associated with clicking on text-links,

as missing the target would fail to send a server request. The only exception

here is when a user clicks on a text-link accidentally while aiming for a different

GUI target, but this is very unusual. Therefore, we assure that each collected

point-and-click action within a web browser has a definite target and is error-free.

For each of these point-and-click actions, we calculate the time to complete

the pointing action as the difference in timestamp from the first mouse-move event

to the last one before the click. The ID is then calculated from the distance,

79

the difference in Cartesian coordinates between the beginning of the movement

and the click, and the target size. It is important to measure the target size as

accurately as possible. Several models have been proposed to extend Fitts’ law

to two dimensional targets. It has been evaluated by [70,111] that one of the best

model is this formula:

T = a + b ■ log2(— m + 1),
rran(Vv, H)

where min(W, H) is the the smaller dimension of the height (H) and width (W) of

a rectangle target. This model reflects the wide founded intuition that the smaller

o \ H o t W should dominant overall performance. For this experiment, we filter all

point-and-clicks so that only those with a text-link as target are considered. Of

all clicks, 17 pixels is the font height of the text hyperlink, which is the smaller

dimension of the text link as a clicking target. For this very reason, we choose 17

pixels as a universal target width for all clicks on a text link.

To get the mean movement time M T in Fitts’ formula Eq. 1.1, raw data must

be averaged. We group the time to point values by ID into buckets of width 0.5,

then each bucket is averaged to produce a single mean time (MT) point on the

graph.

4.3 Evaluation

Fitts’ law describes a linear relationship between the index of difficulty (ID) of a

pointing task and the mean time (MT) to complete that task. We may not know

the values of parameters a and b ahead of time, but we know the fit should be

linear. Thus, to evaluate how well Fitts’ law applies on a given data set, we plot

the MT vs. ID of the pointing actions extracted from the data set. We calculate

the correlation coefficient (r) for each plot to measure how closely it fits a linear

function. An r value of close to 1.0 means perfectly linear data (100% linear

80

1200 Fit Curve

1000

800

■£• 600 e
F 400

200

0 1 2 3
ID [ID - log2(1 + AAV)]

4 5

Figure 4.3: ID vs. Mean Time plotted for the forum users’ data set. The linear correlation is over 98%. Every data point
in the figure is averaged over 180 raw data points.

correlation), while an r value of close to 0 .0 means completely random data (0 %

linear correlation) .3

4.3.1 Fitts’ Law in Natural Browsing

How well does Fitts’ law apply in a natural web browsing environment? To answer

this question, we evaluate the linearity of the first data set, containing 1,047 real-

world forum users’ data. Figure 4.3 shows the mean movement time (M T) as

a function of ID, where error bars show the standard deviation of movement

time. The data fit a linear regression with r showing a 98.28% correlation, which

strongly suggests that the forum data follows Fitts’ law. We can safely conclude

from this that Fitts’ law is robust enough to have real-world applications, not just

under contrived laboratory situations. The a and b coefficients are 48.00 ms and

145.84 ms/bits, respectively. Here the non-zero value of parameter a is partially

due to fact that Fitts’ law does not apply to movements with very low IDs [29].

However, without averaging, Fitts’ law has a poor fit. Given an actual raw

movement time Te, we define percentage error to measure the relative deviation

3The correlation coefficient can actually range from -1 to 1; an r value close to -1.0 would mean
the data perfectly fits a line with negative slope (i.e., an inverse relationship). All data discussed
in this work has a positive slope (i.e., a direct relationship).

81

percentage error > 50%
percentage error < 50%
 perfect prediction

8

Percentage Error

Figure 4.4: Probability distribution of E%, the relative deviation from Fitts' prediction, from raw movement times of natural
web browsing. Histogram bars denote the portion of E% with values in the corresponding block. Below the histogram
is the scattering of raw data, where the location of dense area (between -50% and +50%) indicates the most probable
values of E%.

A perfect prediction from Fitts’ law corresponds to E% = 0. The larger the absolute

value of E% is, the more Te deviates from Fitts’ prediction. Figure 4.4 shows the

probability density of percentage error E% (defined in Eq. 4.1), with the scattering

of raw data in the lower panel. The vertical line at E% = 0% (means zero error)

indicates a perfect prediction. The percentage errors from Fitts’ law to raw data

span from -100% to 350%, and are highly concentrated between -50% and +50%.

This wide range of scattering in terms of percentage error demonstrate, when

applied to natural browsing, Fitts’ prediction is not very accurate and a proper

error model should be taken into account.

To measure the average deviation from Fitts’ model, we define the mean ab

solute percentage error (MAPE) as:

to the Fitts’ prediction MT:

(4.1)

M _ 1 0 0 % ^ Teti - M T (4.2)

where n is the number of data points, Te>i is the ith actual movement time, and

MTi is the Fitts’ prediction corresponding to the ID of ith data point. By averaging

82

all 5,270 raw records, we have an MAPE of 46.40%. This is a significant deviation

and cannot be ignored. In other words, when estimating user movement time on

webpages using Fitts’ model, one should take into account a relative error of

around ±46.40%.

Of course, the above deviation from Fitts’ model are all based on raw data

points, not averaged ones as in Fitts’ original definition. And from a practical

point of view, if one intends to utilize Fitts’ law as a model on raw data, it is crucial

to ask: how should raw data be clustered and averaged? How would the size of

clusters affect the accuracy of Fitts’ law?

As in our case ID is continuous, we have to partition the observations along

the ID axis before averaging raw movement time Tes. The raw data (represented

as pairs {ID, Te)) are clustered and averaged by groups of size S, ranging from 1

to 50. For instance, a group size of 10 means every 10 adjacent records in the as

sorted data are averaged. (In Evans and Wobbrock’s work [38], a more sophisti

cated clustering technique is employed; by contrast, as our goal is not to produce

laboratory-quality results, but to verify if Fitts’ law works well in web browsing,

we choose a relatively straightforward and simple clustering method.) Intuitively,

when more data are included for averaging in each group, the closer the aver

aged data should be to the Fitts' predicted values, which leads to a smaller mean

absolute percentage error (MAPE). Figure 4.5 plots MAPE as a function of clus

ter size, with its value from 1 to 50. It confirms our expectation, and furthermore,

MAPE drops with an exponential rate with the increasing number of actions in a

cluster. Note that with a cluster size of above 40, MAPE stabilizes at around 10%.

4.3.2 Error model

In fact, the large deviation of raw movement time from Fitts’ prediction is men

tioned in many previous studies [20,35] under laboratory settings, but few of them

elaborate in details on this issue. And it is learned that the deviation from Fitts’

83

0 5 10 15 20 25 30 35 40 45 50
Ouster Size (number of raw data]

Figure 4.5: Mean absolute percentage error (MAPE) drops exponentially with the increase of cluster size. A cluster size
S means every S raw data are clustered and averaged. Note that above 40 actions per cluster, MAPE stabilizes at around
10%.

model is due to endpoint variability in human movement. More specifically, the

spread of hits in aimed movement forms a Gaussian distribution about the target

center [29,39,47,70,106,114].

An error in aimed pointings occurs when a user misses a target. Errors are the

outcome of endpoint variability. An error model aims to predict error rates - the

probability of missing a target - given the index of difficulty ID and the movement

time. Intuitively, a higher ID (meaning a more difficult pointing task) and a shorter

movement time (meaning a faster pointing action), lead to a higher error rate.

In particular, Wobbrock etal. [107] derived an error model from Fitts’ law it

self, based on the assumption that distance from endpoint to target center forms

a Gaussian distribution. They evaluated their error model through a series of

controlled experiments, and it is proved to be a very well fit. By employing the

“effective movement time” from [106,107], Fitts’ law (Eq. 1.1) can be rewritten as

where We, is the effective target width coincident with the actual (unaveraged)

movement time Te. Solving for We, we have

(4.3)

(4.4)

84

0.9
0.8
0.7
0.6

u.
8 05

0.4
0.3
0.2
0.1

0
0 100 200 300 400 500

Effective Width W , (pixel]

Figure 4.6: CDF for the effective width We for all movements and for the fast movements. Note that both distributions are
not Gaussian, as were assumed in prior works.

Introducing We allows for mathematically growing or shrinking the effective target,

to correspond to a actual movement time. Under the heuristic that We follows a

normal distribution about the real target width, Wobbrock etal. are able to derive

an accurate error model for laboratory controlled movements.

In this chapter, we intentionally follow Wobbrock’s error model as a guideline

to examine if pointing actions “in the wild" can be interpreted with the same error

model in laboratory studies. And we find that, different from laboratory results,

in a natural browsing environment, fast movements have a different error model

from slower movements. To further understand the high uncertainty of the ac

tual movement time Te with respect to Fitts’ prediction (shown in Figure 4.4), we

define three categories of movements: one is with better pointing performance

(i.e., shorter movement time) than Fitts’ prediction {fast movements), one is with

nominal performance comparative to Fitts’ prediction {medium movements), and

the third one with worse performance than Fitts’ prediction {slow movements) .4

They are defined as follows:

T% < 0.9 -» fast movements:

< 0.9 < T% < l . l -* medium movements;

T%> l . l slow movements.

4This is in the same spirit with Card, Moran & Newell’s division of three imaginary humans
according their HCI performance: Fastman, Slowman and Middleman [16].

all movements
fast movements

85

Our choice of the boundary values above is based on the human users’ per

ception of fast, medium, and slow movements. Given the near-perfect fit on the

average movement time (refer to Fig. 4.3), the Fitts’ predicted value is set as

the nominal case. Thus, fast movement corresponds to moving towards a target

faster than Fitts’ prediction (better pointing performance); slow movement is with

a slower average speed than Fitts’ prediction (worse pointing performance); and

medium movement is the average case in accordance with Fitts’ prediction (typi

cal pointing performance). And our intention of dividing into the three categories

is to explore how the range of deviation from Fitts’ law affects their error models.

Of all 5,084 raw data records, there are 45.44% fast movements, 12.84% medium

movements, and 41.72% slow movements. Faster and slower movements have

distinct nature, because of the difference in closed-loop and open-loop move

ments [47,70,107]. An aimed movement by human consists of multiple loops of

feedback from neural system (to determine the next submovment) and constant

motor fine-tuning. Open-loop movements are without fine-tuning, while close-

loop movements are in contrast with careful fine-tuning. Setting Fitts’ prediction

as a standard bar, we speculate that faster movements are more prone to open-

looped.

For each of the categories, we calculate the effective width We by Eq. 4.4 and

examine its statistical properties. We apply the values of parameters a and b we

get in Section 4.3.1. Note that in Eq. 4.4, for those records with Te < a, which

implies a very quick point-and-click, We < 0. We first filter out those records with a

negative We, which represent 3.53% of all data. Figure 4.6 plots the distribution of

effective width We. As we can see from the CDF curve for all movements, it does

not readily follow a normal distribution as prior works assumed. The same applies

to fast movements as one category. Figure 4.7 shows the distributions for slow

and medium movements, which are Gaussian-shaped, with medium movements

more Gaussian-like. Overall, it is clear that fast movements follow a completely

86

1

slow
movements

0.8

mitdium
m< wemenls

o
0 5 10 15 20 25

Effective Width W. [pixel]

Figure 4.7: CDF for the effective width Wt for the medium and slow movements.

1200

1000 Mouse ■ » ■
Touchpad — —

800

600

I
p 400

200

0
0 2 3 4 5

ID [ID - k>fl2<1 + A/W)J
6

Figure 4.8: ID vs. Mean Time plotted for all collected physical mouse traces and all touchpad traces. Each data point in
the figure is a result of averaging 180 raw data records. Note that the linear correlation is similar for both devices (over
98% in both cases).

different statistical model from other two categories, which implies a different error

model.

The derivation of the Fitts’ law error model from Wobbrock et al. [107] then

becomes:

and f(x) is the probability density function of the distance from target center,

which is not necessarily a normal distribution.

Regarding the observed distinction between faster and slower movements, it

is evident that Fitts’ law does not model fast movements well. Rather, faster move

ments tend to be dominated by initial impulse, which is more fit into Schmidt’s

law [92].

where

87

Mouse
Touchpad

1800
1600

1400
1200
1000
800
600
400
200

1H

0 2 3
ID [ID - log2(1 + AW)]

1 54

Figure 4.9: ID vs. Mean Time plotted for User 1’s physical mouse trace and touchpad mouse trace. Each data point in
the figure is a result of averaging 10 raw data records.

4.3.3 Effect of Pointing Device

How does the choice of pointing device affect Fitts’ law? While many early Fitts’

law studies were performed using a stylus [40], recent studies have used many

other pointing devices, including physical mice [15]. Does this choice affect the

accuracy of the Fitts model? What about the use of a laptop touchpad? To an

swer this question, we evaluate the linearity of the second data set, containing

both physical mouse and touchpad traces from across 1 0 people, for a total of 8

mouse traces and 7 touchpad traces. Figure 4.8 shows the combined physical

mouse data plotted alongside the combined touchpad data. The physical mouse

data show a linear correlation of 99.71%, a nearly perfect linear fit. The touch

pad data matches the physical mouse data for low ID pointing tasks, but diverges

somewhat for high ID pointing tasks. However, its r value still shows a 98.04%

linear correlation, strongly suggesting that Fitts’ law accurately models pointing

tasks with either type of pointing device. The close similarity between their corre

lation coefficients indicates that the choice of pointing device does not impact the

law’s applicability - again, showing that Fitts’ law is robust to different real-world

environments.

The divergence of touchpad data at high ID values implies that, in reaching

for a distant hyperlink (which leads to a high ID), touchpad is different from a

traditional mouse. In the case of using touchpad, a user tend to make multiple

88

1400

1200

_ 1000 g
3 800e
| 600

400

200

0
0 1 2 3 4 5 6

ID [10 • log2(1 + AAV)]

Figure 4.10: ID vs. Mean Time plotted for User 2's physical mouse trace and touchpad trace. Each data point in the figure
is a result of averaging 10 raw data records.

swipes before reaching a distant target. While using a traditional mouse would

usually be completed in a single swipe. In the touchpad data, what we have

recorded as “continuous movement” is actually the last swipe, in which the user

is likely to speed up, and that makes MT smaller than Fitts predicted.

One can also compare the traces recorded from one individual on two different

pointing devices, for those users who recorded both physical mouse and touch

pad data. There are three such users. Figure 4.9 shows the results of plotting

User 1 ’s mouse and touchpad traces. The relationship shows a similar trend as

in the combined case - the data matches at low ID values but diverges at high

ID values. However, the data still appears to be mostly linear.

Figure 4.10 shows the results of plotting User 2’s single mouse trace and

touchpad trace. Here, the mouse trace is linear as expected, but touchpad trace

diverges greatly, even showing a downward nonlinear curve at high ID values.

This shows that even for a single user, environmental factors can cause a dif

ference in pointing actions from trace to trace, but when averaged the pointing

actions all fit the Fitts model.

Figures 4.11,4.12 and 4.13 show the results of plotting User 3’s single mouse

trace and two touchpad traces. All of this user’s data follows a tightly correlated

strong linear relationship. This shows that it is possible for a user’s pointing ac

tions using a touchpad to very closely match his or her pointing actions using a

physical mouse. Thus, the use of different pointing devices does not break the

89

Mouse
Touchpad

Iv ftO fll

1000 Mouse ■ « ■
Toudipad (Trace #1) ■ ■ ■

800

I
l

10 [ID • tog2(1 + A/W)}

Figure 4.11: ID vs. Mean Time plotted for User 3's physical mouse trace and touchpad trace #1. Each data point in the
figure is a result of averaging 10 raw data records.

Fitts model.

Note that the two users in our measurement above point faster with touchpad

than mouse (refer to Figs. 4.9 and 4.10). This somewhat deviates from the ob

servation of previous works [37,71], where users point slightly faster with mouse

than touchpad. Two reasons might apply here. Firstly, in our measurement, a

user’s movements are confined in the browser window. As touchpad is a friendly

environment for short-range movement (i.e., one finger stroke), it is no surprise

to see some faster pointings with touchpad than mouse within the browser win

dow. Secondly, both touchpad and mouse devices have been greatly improved

than two decades ago (when previous experiments [37,71] are done), and thus

it is quite possible that the observation made two decades ago does not hold

nowadays in some scenarios.

4.3.4 Standard Deviation of Movement Time

The Fitts’ law formula describes the mean time to complete a pointing action,

and thus Fitts’ law research in general focuses mainly on metrics involving the

mean. However, a model is not defined solely by its mean value; there are also

other considerations to take into account. For the purposes of this work, we focus

specifically on the standard deviation (and, by extension, the variance) of the

time to complete a pointing action given by the Fitts’ model under a natural web

90

1000 Mouse
Touchpad (Trace #2)

800

1 „
I 400

800 ■ rC5oT5 l

400

0 1 2 3 4 5 6
ID (10 - tog2(1 + A/W)J

Figure 4.12: ID vs. Mean Time plotted for User 3's physical mouse trace and touchpad trace #2. Each data point in the
figure is a result of averaging 10 raw data records.

0 1 2 3 4 5 6
ID [10 ■ 1002(1 t AAV)]

Figure 4.13: ID vs. Mean Time plotted for User 3’s touchpad traces #1 and #2. Each data point in the figure is a result of
averaging 10 raw data records.

browsing environment.

To analyze the variance present in the Fitts model, we perform the same Fitts’

law calculations on the first data set containing 1,047 forum users' traces. This

time, however, we plot the ID of the pointing task versus the standard deviation

of the time to complete the pointing action, rather than the mean time to point.

Figure 4.14 shows the results. Clearly, Fitts’ law describes not only a linear rela

tionship between ID and the mean pointing time, but also a linear relationship be

tween ID and the standard deviation of pointing time. In other words, the higher

the ID of a pointing task, the more variance there is in the time it takes different

users to complete such a task. This can be explained by signal-dependent noise

in human neuromotor systems [50], which increases with the growth of control

signal strength.

Touchpad (Trace # i
Touchpad (Trace #2

91

400

I 3501 300

h 250

2001 150
8 100
£ 50

0

Rt Curve

1 2 3 4
ID [ID * log2(1 + A/W)]

Figure 4.14: ID vs. Standard Deviation of Fitts’ law calculations for the forum users' data set. Note the linear relationship.

User Gender a [ms] 6 [ms/bits]
Correlation

 J?----- MAPE
Movement Categories

Slow Medium Fast Device
#1 Male 6.28 117.14

£&£18
3 Male -21.68 242.52

5 Female 50.52 118.74

0.933 41.73% 41.33% 13.68% 44.99% Mouse

0936 3324% 43.80% 14.60% 41.61% Mouse

0.963 42.59% 41.54% 13.03% 45.42% Mouse

Table 4.1: Fitts' Law Related Parameters for Users of Mouse

4.4 Discussion

In this section, we discuss four related issues of Fitts’ law in the context of web

browsing: firstly, we derive an analytical estimate on the inaccuracy in our dis

tance measurement, and further show that the caused inaccuracy is minor over

all; secondly, in acknowledge of the difference between web browsing and tra

ditional Fitts’ law experiments, we provide a guideline on how to apply Fitts’ law

to web browsing; thirdly, as touchscreen (on mobile phones and tablets) has be

come increasingly popular for web browsing, we discuss if it is possible to extend

Fitts’ law to touchscreens; lastly, we present the Fitts related parameters for cer

tain users, and preliminarily explore the possibility of user profiling.

4.4.1 Inaccuracy on Distance Measure

In our experiment, the distance to the target (A in Eq. 1.1) is measured as the

distance from beginning of the continuous movement to the clicked endpoint.

However, ideally A should be the distance from starting position to the center

92

of the target. Due to human movement variance, the clicked endpoint could not

be exactly at the target center. In fact, it has been found in previous works [29,39,

47,70,106,114] that distance of the endpoint to the target center forms a normal

distribution. Therefore, in our measurement, inaccuracy on the true distance A

occurs especially when clicking on long hyperlinks. Figure 4.15 shows that, when

clicking on a very long link, a user could either take path #1 to the left of the target

center, thus rendering an underestimated distance; or he/she could take path #2,

resulting in an overestimated distance. Overall, we believe that the inaccuracy on

distance in our experiment is minor, since a typical webpage should be dominated

by short links which only contain one or two words.

In particular, when link length is much less than the true distance to target

center, the deviation of our measurement to the true distance is negligible. We

denote D as the horizontal width of the target link, A as the true distance to target

center, they are illustrated in Figure 4.15. For a certain actual click action, we

denote the distance from the clicked endpoint to target center as d. Angle 6 is

angle between the line of true distance and the line of actual path taken. The

relative error of measured distance A' to the true distance A is

SA = M _ £ l . (4.5)

From the law of cosines, we have

A' = VA2 + (P -2A-d-cos6. (4.6)

93

User Gender a [ms] b [ms/bits]
Correlation

MAPE
Movement Categories

Device& Slow Medium Fast
#6 Male 27.70 226.34 0.925 30.80% 32.91% 16.08% 51.01% Mouse
#6 Male 121.04 97.32 0.851 41.65% 41.64% 12.79% 45.57% Touchpad

8 Female
.

61.57 167.51 0.931 *39.98% 40.56% 17.46% 41.97% Mouse
#8 Female 108.64 65.83 0.678 49.01% 38.59% 10.68% 50.73% Touchpad

Table 4.2: Fitts' Law Related Parameters for Users of Both Mouse and Touchpad

Therefore,

(M)2 =
A2 + (A2 + d2 - 2A ■ d ■ cos0)

A2
2Ay/A2 + d? — 2A ■ d ■ cos 6

A2

= 2 + (j)2 ~ 2 ' J ' cos9

- 2 \ / l + (j) 2 - 2 - j - c o s e . (4.7)

In case of clicking on short links with a horizontal length D, we assume D <

A. For a successful click, we have d < D/2. Thus D < A means d « A, or

d/A -> 0. Define e = d/A, Eq. 4.7 becomes

(£/t)2 = 2 — 2V T+^2~^2e^~cos6 + e2 — 2e • cos0. (4.8)

As we can see, since || cos0|| < 1, when e -> 0, which corresponds to short links,

e • cos 6 -» 0 as well. Therefore, the relative error of our distance measure 5A -> 0.

4.4.2 Guidelines on Applying Fitts’ Model to Web Browsing

From our experiments, we learn that the way one can apply Fitts’ law to web

browsing is different from what previous works describe for restricted laboratory

settings. Therefore, we summarize a suggested guideline on how to apply Fitts’

law model in web browsing as follows:

94

Sams, Link

Starting
I Point

Figure 4.15: Click inaccuracy.

1. Data Collection: Besides x-y coordinates and timestamps, target types

must be recorded as well, as it is needed to measure the target width.

2. Clustering and Averaging: Sort all records with increasing IDs, choose a

proper cluster size S (our results show that S > 40 yields optimal results),

then average every S raw data.

3. Linear Regression: Plot the averaged ID and M T pairs, fit them in a

straight line, and calculate parameters a and b. Note that they are user- and

environment-specific.

4.4.3 Possible Extension to Touchscreens?

Touch screen in tablets and mobile phones has become an increasingly popular

device for web browsing. However, with a touch screen, to reach for a link on a

webpage, users usually slide and tap. This is very different from using mice and

touchpad, which always involves continuous cursor movements before clicking.

Although one can do a deliberately structured Fitts’ law test as in [33], we believe

that there is no regular pointing behavior under natural browsing in a mobile de

vice or tablet. And even in [33]’s Fitts’ law results [34], we can see that the data

points with an iPhone are very noisy, and thus lack a linear pattern, especially

compared to those with mice and touchpad.

95

4.4.4 User Profiling by Fitts’ Parameters

As we mentioned in Section 1, the two constants a and b in Fitts’ law formula

Eq. 1.1 are affected by both the user and the environment factors. Those two

constants, along with other Fitts law related parameters, such as correlation co

efficient, mean absolute percentage error (MAPE), percentage of slow, medium,

and fast movements, how do they differ from user to user under the same en

vironment? And how are they affected by different environments given a same

user? If the parameters are more affected by users than by environmental fac

tors, then it would be possible to predict which user group an online user belongs

to. For example, it may be possible to make a good guess about if the user online

is male or female, right-handed or left-handed, age ranges, or even education

backgrounds. This could be very useful for online authentication because for a

certain website, such as online banking or student account, the registered users

are relatively stable. Here we present preliminary results from our controlled data

set, on how the parameters are affected by different users and environments.

Table 4.1 shows Fitts’ law related parameters for all 5 users using mice. There

are 3 male users and 2 female users. We can see that, with respect to dividing

user groups, male vs. female as an example, there is no strong indication in any

of the parameters for gender differences. For example, female user #5 is very

similar to male user #1 in all parameters, except for parameter a; but a alone

cannot reflect gender differences as female user #4’s a is very close to that of

male user #1.

Which of the two factors, user or environment, plays a major role in affecting

Fitts’ law related parameters? To answer this question, we look at the mouse and

touchpad data of the same user. Table 4.2 shows the parameters for 3 users with

both mouse and touchpad data. In the table, we can see the diverging effects of

changing environments for different users. For example, both user #6 and #8’s

96

parameters are greatly affected by changing from a mouse to touchpad, while

user #7’ parameters are relatively stable regardless of using mouse or touchpad.

Overall, from the preliminary results, there is no definite line in dividing dif

ferent user groups; and the changing of environments has different effects on

different users. However, the size of our controlled data set, 10, may be too

small to draw a definite conclusion. Moreover, the parameters we explored can

not capture all characteristics of human mouse movements in web browsing. It

is possible that other kinetic-related metrics are able to differentiate user groups.

We leave this for future works.

4.5 Conclusion and Future Work

This chapter examined the Fitts’ model in the context of natural web browsing.

Mouse movement data from over 1,000 real-world Internet users was collected

via Javascript embedded on a web forum, and the analysis showed a linear rela

tionship between the ID and M T of the task with over 98% correlation, suggest

ing strong evidence that Fitts’ law extends well to web browsing behavior.

In addition, we evaluated the deviation in raw movement time from Fitts’ pre

dicted M T, especially the error model proposed by previous works. From the raw

data, there exists a large deviation from Fitts’ predicted values, with a 46.40%

mean absolute deviation. We further divided all movements into three categories

by the Fitts’ predicted MT: slow, medium, and fast movements. And fast move

ments were shown to have an error model different from the other two categories,

which indicates their open-looped nature.

Moreover, this chapter examined the effect of differing pointing devices on the

Fitts model. Pointing data was collected from 10 people variously using physical

mice and laptop touch pads. The analysis showed that both devices had a strong

linear relationship between ID and M T (over 98% correlation in both cases), and

97

that the results were nearly identical at low ID values, yet diverged slightly at high

ID values.

Finally, this chapter discussed other Fitts’ Law considerations, namely the

standard deviation in Fitts’ Law calculations. The forum data set was analyzed

and the standard deviation of M T plotted against ID . The result showed that

Fitts’ Law also describes a linear relationship between ID and standard devia

tion, implying that variance in time to point increases as ID increases.

There are a number of possible directions for our future work. We plan to

conduct a large-scale user data collection, with their demographic information

known. Then, we plan to further verify the possibility of classifying users into

different groups (gender, age, handedness, etc) based on Fitts’ law parameters.

We also plan to explore the possibility to detect web bots by checking if the mouse

movement pattern follows Fitts’ law.

98

5 Conclusion and Future Work

The protection of an end user’ identity and privacy is always the core mission

of security research. In recent years, it has become increasingly critical due to

prevalence of online media and mobile applications. In this dissertation, we have

focused on user re-authentication by exploiting user behavior patterns and mod

eling. The first two projects are dedicated to user verification based on mouse

movement patterns and touchscreen tapping behaviors, respectively, and the

third one is on modeling web browsing behaviors from end users by Fitts’ Law.

For future works, we plan to pursue in two directions. Firstly, we intend to

exploit multi-finger tappings (as opposed to single-finger tappings in Chapter 3)

for smartphone user verification. Secondly, we will conduct another research on

analyzing privacy issues in Amazon wish list [4]. The rest of this chapter will detail

research plans regarding these two topics specifically.

Multi-Finger Tappings for Smartphone User Verifica

tion

As demonstrated in Chapter 3, we have seen how PIN entering process can

contribute to user verification by using single-finger tappings. In this section, we

propose to extend the work in Chapter 3 by further exploiting multi-finger\app\ngs.

For the purpose of smartphone user verification, enabling multi-finger tappings

has the following benefits.

99

First, it leads to increased key space1 for entering a smartphone PIN. Under

a single-finger tapping scheme, given a PIN number, a user essentially has only

one way of entering his/her PIN (i.e., tapping every digit with one designated fin

ger, e.g., index finger). In contrast, multi-finger tapping adds the possibility of

using different fingers for entering the digits within one passcode. Those differ

ent finger combinations clearly form distinguishable patterns in terms of various

sensor-related features (such as contact size, tapping pressure, and timings).

For this very reason, a successful impostor also needs to know the specific finger

combination associated with the target user. As an example to illustrate the key

space under the multi-finger tapping scheme, the number of ways for entering a

4-digit passcode can be calculated as follows.

• Number of ways if using four different fingers = P54 x (P44 + C4(P3 + P2) +

C l x PjJ + l) = 9,720;

• Number of ways if using three different fingers = C\ x P53 x (P44 + P33 + C\ x

C\ x P3 + C\ x P22 + C\ x P2) = 22,320;

• Number of ways if using two different fingers = C\ x P52 x (P44 + C\ x P33) +

C\ x P2 x (P4 + C\ x C\ x P3 + C\ x P2) = 9,600;

• Number of ways if using one finger = C\ x P44 = 120.

The final key space associated with a fixed 4-digit passcode, therefore, is 9,720 +

22,320 + 9,600 + 120 = 41,760, which is more than four times larger than that

using single-finger tappings.

Second, the multi-finger tapping scheme further increases the security level

by exploiting more personal traits than the single-finger scheme. Specifically,

it grasps the uniqueness of all fingers’ size and flexibility from the target user,

instead of just one designated finger. For example, it would be much harder for

’ Here key space is defined as the number of distinguishable ways of entering a given PIN.

100

an impostor to regenerate a user’s behavior involving with five different fingers

than just one finger. Thus, multi-finger tappings render a richer personal tapping

profile for the target user.

However, there might be hot-spot ways on entering a certain passcode. For

example, to enter 1-2-3-4, people would probably prefer to user thumb-index-

middle-fourth fingers, rather than out-of-order fingers. We will explore this issue

in the future.

Privacy Issues in Amazon Wishlist

As social media has become increasingly more popular in recent days, it is com

mon for users to reveal their personal information and preferences publicly on

line [43]. One such example is the Amazon wish list [4], which is an online gift

registry. It allows users to add wished merchandise and then spread the link via

emails or social networks. Because Amazon wish list is by nature to be shared

with others, it is in very large extent can be seen by all online visitors2. In this

project, we plan to evaluate and analyze user privacy leaks from publicly shared

Amazon wish lists.

For an initial assessment, we have collected data from 46,000 users' Amazon

wish lists using Java with support of jsoup library 1.7.2 [59]. Among all users,

our data indicate that 40.4% of the users are publicly sharing birthday informa

tion, 33.6% are sharing location information, and 24.7% are sharing both pieces

of information. Considering the the total number of active Amazon accounts is

currently 237 million [99], we can see a large number of population expose their

personal information {name, home town, birthday}, which are associated with

most commonly used items in security questions for password recovery. Note

that although fake profiles are possible, it is not likely to happen often because:

2except that users explicitly change its setting to “private”.

101

(1) from a user’s standpoint, the inclusion of additional personal information is to

have his/her friends accurately search for the wish list in the first place; (2) those

additional information are optional to enter. Therefore, we believe the above sta

tistical numbers are of highly reliable.

For the next step, we plan to study the following aspects in data analysis and

user preference mining:

• Clustering into user groups based on more specific content in their wish lists

like book titles or music categories.

• Monitoring the temporal dynamics of a user’s wish list throughout the year

during four calendar-based seasons and holidays seasons, including Thanks

giving, Christmas/New Year, Valentine’s Day, and Mother’s Day, etc.

• To assess the risk of privacy leak from Amazon wish list, we plan to measure

the success rate of inferring critical pieces of demographic information from

users’ wish lists alone. The personal information of interest includes, but

not limited to, age range, education background, marital status, and children

(their age, gender, etc.), where the ground truth can be obtained from users

who reveal that information in “About Me”.

102

Bibliography

[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user interac

tion models for predicting web search result preferences. In Proceedings

of the 29th annual international ACM SIGIR conference on research and

development in information retrieval, SIGIR ’06, pages 3-10,2006.

[2] A. A. E. Ahmed and I. Traore. Anomaly intrusion detection based on biomet

rics. In Proceedings of the 2005 IEEE Workshop on Information Assurance,

2005.

[3] A. A. E. Ahmed and I. Traore. A new biometric technology based on

mouse dynamics. IEEE Transactions on Dependable and Secure Com

puting, 4(3):165—179, 2007.

[4] Amazon Wishlist. http://www.amazon.com/gp/wishlist.

[5] D. Amitay. Most Common iPhone Passcodes, http://amitay.us/biog/

f iles/most_common_iphone_passcodes.php. [Accessed: Nov. 2012],

[6] J. Annet, C. W. Golby, and H. Kay. The measurement of elements in an as

sembly task: The information output of the human motor system. Quarterly

Journal of Experimental Psychology, 10:1-11,1958.

[7] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith. Smudge

attacks on smartphone touch screens. In Proceedings of the 4th USENIX

Conference on Offensive Technologies, WOOT'10, pages 1-7, 2010.

103

http://www.amazon.com/gp/wishlist
http://amitay.us/biog/

[8] L. Ballard, F. Monrose, and D. Lopresi. Biometric authentication revisited:

Understanding the impact of wolves in sheep’s clothing. In USENIX Secu

rity Symposium, 2006.

[9] F. Bergadano, D. Gunetti, and C. Picardi. User authentication through

keystroke dynamics. ACM Transactions on Information and System Se

curity (TISSEC), 5(4):367-397, 2002.

[10] R. Biddle, S. Chiasson, and P. van Oorschot. Graphical passwords: Learn

ing from the first twelve years. ACM Computing Surveys, 2011. (to appear).

[11] F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau,

S. Meignier, T. Merlin, J. Ortega-Garcfa, D. Petrovska-Delacretaz, and D. A.

Reynolds. A tutorial on text-independent speaker verification. EURASIP J.

Appl. Signal Process., 2004:430-451, Jan. 2004.

[12] R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Semantic pointing: improv

ing target acquisition with control-display ratio adaptation. In ACM CHI’04,

pages 519-526. ACM, 2004.

[13] T. Buch, A. Cotoranu, E. Jeskey, et al. An enhanced keystroke biometric

system and associated studies. In Proceedings of Student-Faculty Re

search Day, CSIS, Pace University, pages C4.2-C4.7, 2008.

[14] L. Cai and H. Chen. Touchlogger: inferring keystrokes on touch screen

from smartphone motion. In USENIX Workshop on Hot Topics in Security

(HotSec), 2011.

[15] S. K. Card, W. K. English, and B. J. Burr. Evaluation of mouse, rate-

controlled isometric joystick, step keys, and text keys for text selection on a

CRT. Ergonomics, 21 (8):601-613,1978.

104

[16] S. K. Card, T. P. Moran, and A. Newell. The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates, Publishers, 1983.

[17] P. K. Chan. A non-invasive learning approach to building web user profiles.

In ACM SIGKDD International Confreence, 1999.

[18] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector

machines, 2001. Software available at http://www.csie.ntu.edu.tw/

-cjlin/libsvm.

[19] T.-Y. Chang, C.-J. Tsai, and J.-H. Lin. A graphical-based password

keystroke dynamic authentication system for touch screen handheld mo

bile devices. J. Syst. Softw., 85(5):1157-1165, May 2012.

[20] O. Chapuis, R. Blanch, and M. Beaudouin-Lefon. Fitts’ law in the wild: A

field study of aimed movements. Technical Report Rapport de Recherche

No 1480, LRI, December 2007.

[21] S. Chiasson, A. Forget, E. Stobert, P. van Oorschot, and R. Biddle. Multiple

password interference in text passwords and click-based graphical pass

words. In ACM Conference on Computer and Communications Security

(CCS), 2009.

[22] S. Chiasson, P. C. V. Oorschot, and R. Biddle. Graphical password authenti

cation using cued click-points. In 12th European Symposium On Research

In Computer Security (ESORICS), 2007. Springer-Verlag, 2007.

[23] S. Chiasson, P. van Oorschot, and R. Biddle. A usability study and critique

of two password managers. In USENIX Security Symposium, 2006.

[24] J. Citty and D. R. Hutchings. TAPI: Touch-screen authentication using par

titioned images. In Eton University Technical Report 2010-1, Tech Report,

2010.

105

http://www.csie.ntu.edu.tw/

[25] N. Clarke, S. Karatzouni, and S. Furnell. Flexible and transparent user au

thentication for mobile devices. Emerging Challenges for Security, Privacy

and Trust, pages 1-12, 2009.

[26] N. L. Clarke and S. M. Furnell. Authenticating mobile phone users using

keystroke analysis. Int. J. Inf. Secur., 6(1):1—14, Dec. 2006.

[27] Computing Research Association et al. Four grand challenges in trustwor

thy computing, 2003.

[28] M. Conti, I. Zachia-Zlatea, and B. Crispo. Mind how you answer me!: trans

parently authenticating the user of a smartphone when answering or plac

ing a call. In Proceedings of the 6th ACM Symposium on Information, Com

puter and Communications Security, ASIACCS’11, pages 249-259, 2011.

[29] E. R. F. W. Crossman and P. J. Goodeve. Feedback control of hand-

movementand Fitts’ law. Quarterly J. of Exp. Psychology, 35A(2):251—178,

1963/1983.

[30] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann. Touch me

once and i know it’s you!: implicit authentication based on touch screen

patterns. In ACM CHi’12, pages 987-996, 2012.

[31] M. Derawi, C. Nickel, P. Bours, and C. Busch. Unobtrusive user-

authentication on mobile phones using biometric gait recognition. In In

telligent Information Hiding and Multimedia Signal Processing (IIH-MSP),

2010 Sixth International Conference on, pages 306-311. IEEE, 2010.

[32] H. Dillen, J. G. Phillips, and J. W. Meehan. Kinematic analysis of cursor

trajectories controlled with a touchpad. International Journal of Human-

Computer Interaction, 19(2):223-239, 2005.

106

[33] J. Donovan. Fitts's Law Test, http://jareddonovan.com/programming/

fitts_law/.

[34] J. Donovan. Fitts’s Law Test Result, http://jareddonovan.com/

programming/f itts_law/graph.png.

[35] H. Drewes. Only one Fitts’ law formula please! In ACM CHI'10, pages

2813-2822, 2010.

[36] DTREG. SVM - Support Vector Machines, http://www.dtreg.com/svm.

htm, Feb 2011.

[37] B. W. Epps. Comparison of six cursor control devices based on Fitts’ law

models. In Proceedings of the Human Factors Society 30th Annual Meet

ing, pages 327-331,1986.

[38] A. C. Evans and J. O. Wobbrock. Taming wild behavior: the input observer

for obtaining text entry and mouse pointing measures from everyday com

puter use. In ACM CHI’12, pages 1947-1956, 2012.

[39] R M. Fitts. The information capacity of the human motor system in con

trolling the amplitude of movement. Journal of Experimental Psychology,

47(6) :381-391, 1954.

[40] P. M. Fitts and J. R. Peterson. Information capacity of discrete motor re

sponses. Journal of Experimental Psychology, 67(2):103-112,1964.

[41] D. Florencio and C. Herley. A large scale study of web password habits. In

Proceedings of WWW 2007, 2007.

[42] C. Forlines, D. Vogel, and R. Balakrishnan. Hybridpointing: fluid switching

between absolute and relative pointing with a direct input device. In ACM

UIST'06, pages 211-220. ACM, 2006.

107

http://jareddonovan.com/programming/
http://jareddonovan.com/
http://www.dtreg.com/svm

[43] D. Frankowski, D. Cosley, S. Sen, L. Terveen, and J. Riedl. You are what

you say: Privacy risks of public mentions. In SIGIR’06, pages 565-572,

2006.

[44] K. Z. Gajos, K. Reinecke, and C. Herrmann. Accurate measurements of

pointing performance from in situ observations. In ACM CHI’12 ,2012.

[45] H. Gamboa and A. Fred. A behavioral biometric system based on human-

computer interaction. In Society of Photo-Optical Instrumentation Engi

neers (SPIE) Conference Series, volume 5404, pages 381-392, Aug. 2004.

[46] M. Goel, J. Wobbrock, and S. Patel. Gripsense: using built-in sensors

to detect hand posture and pressure on commodity mobile phones. In

UIST'12, pages 545-554, 2012.

[47] T. Grossman and R. Balakrishnan. A probalilistic approach to modeling

two-dimensional pointing. ACM Transactions on Computer-Human Interac

tion, 12(3):435-459, 2005.

[48] J. Guerra-Casanova, C. Sanchez-Avila, G. Bailador, and A. de San

tos Sierra. Authentication in mobile devices through hand gesture recogni

tion. International Journal of Information Security, 11 (2):65—83, Apr. 2012.

[49] P. Gupta, S. Ravi, A. Raghunathan, and N. K. Jha. Efficient fingerprint-

based user authentication for embedded systems. In Proceedings of the

42nd annual Design Automation Conference (DAC), pages 244-247,2005.

[50] C. M. Harris and D. M. Wolpert. Signal-dependent noise determines motor

planning. Nature, 394:780-784, 1998.

[51] J. Hu, H.-J. Zeng, H. Li, C. Niu, and Z. Chen. Demographic prediction

based on user’s browsing behavior. In Proceedings of the 16th international

conference on World Wide Web, WWW ’07, pages 151-160, 2007.

108

[52] J. Huang, R. W. White, and S. Dumais. No clicks, no problem: using cursor

movements to understand and improve search. In ACM CHI'11, pages

1225-1234, 2011.

[53] A. Hurst, J. Mankoff, and S. E. Hudson. Understanding pointing problems

in real world computing environments. In Proceedings of the 10th interna

tional ACM SIGACCESS conference on Computers and accessibility, As

sets ’08, pages 43-50, 2008.

[54] R. J. Jagacinski, D. W. Repperger, M. S. Moran, S. L. Ward, and B. Glass.

Fitts’ law and the microstructure of rapid discrete movements. Journal of

Experimental Psychology: Human Perception and Performance, 6:309-

320,1980.

[55] A. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition.

Circuits and Systems for Video Technology, IEEE Transactions on, 14(1):4

- 20, jan. 2004.

[56] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and A. D. Rubin. The design

and analysis of graphical passwords. In USENIX Security Symposium,

pages 1-14,1999.

[57] T. Joachims. Text categorization with support vector machines: Learning

with many relevant features. In Proc. of European Conference on Machine

Learning, pages 137-142,1998.

[58] Z. Jorgensen and T. Yu. On mouse dynamics as a behavioral biometric for

authentication. In Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security, ASIACCS '11, pages 476-482,

2011.

[59] jsoup: Java HTML Parser, http://jsoup.org.

109

http://jsoup.org

[60] S. Karatzouni and N. Clarke. Keystroke analysis for thumb-based key

boards on mobile devices. New Approaches for Security, Privacy and Trust

in Complex Environments, pages 253-263, 2007.

[61] S. W. Keele and M. I. Posner. Processing visual feedback in rapid move

ment. Journal of Experimental Psychology, 77:155-158,1968.

[62] B. A. Kerr and G. D. Langolf. Speed of aiming movements. Quarterly

Journal of Experimental Psychology, 29:475-481,1977.

[63] R. Kerr. Movement time in an underwater environment. Journal of Motor

Behavior, 5:175-178,1973.

[64] K. Killourhy and R. Maxion. Why did my detector do that?!: predicting

keystroke-dynamics error rates. In Proceedings of RAID’10, pages 256-

276, 2010.

[65] K. S. Killourhy and R. A. Maxion. Comparing anomaly-detection algorithms

for keystroke dynamics. In IEEE DSN’09, pages 125-134, 2009.

[66] D. Kim, P. Dunphy, P. Briggs, J. Hook, J. W. Nicholson, J. Nicholson, and

P. Olivier. Multi-touch authentication on tabletops. In ACM CHI’10, pages

1093-1102, 2010.

[67] U. Kukreja, W. E. Stevenson, and F. E. Ritter. RUI: Recording user input

from interfaces under Windows and Mac OS X. Behavior Research Meth

ods, 38(4):656-659, 2006.

[68] R. Kumar and A. Tomkins. A characterization of online browsing behavior.

In Proceedings of the 19th international conference on World Wide Web,

WWW ’10, pages 561-570, 2010.

110

[69] G. D. Langolf, D. B. Chaffin, and J. A. Foulke. An investigation of Fitts’ law

using a wide range of movement amplitudes. Journal of Motor Behavior,

8:113-128,1976.

[70] I. S. MacKenzie. Fitts’ law as a research and design tool in human-

computer interaction. Human-Computer Interaction, 7:91-139,1992.

[71] I. S. MacKenzie, A. Sellen, and W. Buxton. A comparison of input devices

in elemental pointing and dragging tasks. In ACM CHI'91, pages 161-166,

1991.

[72] C. Mallauran, J.-L. Dugelay, F. Perronnin, and C. Garcia. Online face de

tection and user authentication. In Proceedings of the 13th annual ACM

international conference on Multimedia (MM), pages 219-220, 2005.

[73] R. A. Maxion and K. S. Killourhy. Keystroke biometrics with number-pad

input. In IEEE DSN’10, pages 201-210, 2010.

[74] D. E. Meyer, R. A. Abrams, S. Kornblum, C. E. Wright, and J. E. K. Smith.

Optimality and human motor performance: Ideal control of rapid aimed

movements. Psychological Review, 95:340-370,1988.

[75] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury. Tap-

prints: your finger taps have fingerprints. In ACM MobiSys'12, 2012.

[76] F. Monrose, M. K. Reiter, and S. Wetzel. Password hardening based on

keystroke dynamics. In ACM Conference on Computer and Communica

tions Security (CCS), pages 73-82,1999.

[77] F. Monrose and A. D. Rubin. Authentication via keystroke dynamics. In ACM

Conference on Computer and Communications Security (CCS), pages 48-

56,1997.

111

[78] Y. Nakkabi, I. Traore, and A. A. E. Ahmed. Improving mouse dynamics

biometric performance using variance reduction via extractors with sep

arate features. IEEE Transactions on Systems, Man, and Cybernetics,

40(6):1345-1353, 2010.

[79] M. Nauman and T. Ali. Token: Trustable keystroke-based authentication for

web-based applications on smartphones. Information security and assur

ance, pages 286-297, 2010.

[80] C. Nickel, M. Derawi, P. Bours, and C. Busch. Scenario test for

accelerometer-based biometric gait recognition. In 3rd International Work

shop on Security and Communication Networks (IWSCN 2011), 2011.

[81] P. H. Oliver Chapelle. Support vector machines for histogram-based image

classification. IEEE Transactions on Neural Networks, 10{5):1055 - 1064,

sep. 1999.

[82] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. Accessory: password

inference using accelerometers on smartphones. In HotMobiie’12, pages

9:1—9:6, 2012.

[83] C. Papageorgiou, M. Oren, and T. Poggio. A general framework for object

detection. In Proceedings of the International Conference on Computer

Vision, 1998.

[84] A. Peacok, X. Ke, and M. Wilkerson. Typing patterns: A key to user identi

fication. IEEE Security and Privacy, 2(5) .40-47, 2004.

[85] J. G. Phillips and T. J. Triggs. Characteristics of cursor trajectories con

trolled by the computer mouse. Ergonomics, 44:527-536, 2001.

[86] P. Phillips, J. Beveridge, B. Draper, G. Givens, A. O’Toole, D. Bolme, J. Dun

lop, Y. M. Lui, H. Sahibzada, and S. Weimer. An introduction to the good,

112

the bad, & the ugly face recognition challenge problem. In Automatic Face

Gesture Recognition and Workshops (FG 2011), 2011 IEEE International

Conference on, pages 346 -353, march 2011.

[87] P. J. Phillips. Support vector machines applied to face recognition. In Pro

ceedings of the 1998 conference on Advances in neural information pro

cessing systems II, pages 803-809,1999.

[88] M. Pusara and C. E. Brodley. User re-authentication via mouse move

ments. In Proceedings of the 2004 ACM workshop on Visualization and

data mining for computer security, pages 1-8, 2004.

[89] D. A. Rosenbaum. Human Motor Control. Academic Press, Inc., 1991.

[90] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell. Stronger pass

word authentication using browser extensions. In USENIX Security Sym

posium, 2005.

[91] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon. Biometric-rich gestures:

a novel approach to authentication on multi-touch devices. In ACM CHI’12,

pages 977-986, 2012.

[92] R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, and J. T. J. Quinn.

Motor output variability: A theory for the accuracy of rapid motor acts. Psy

chological Review, 86:415-451, 1979.

[93] D. Schulz. Mouse curve biometrics. In Biometric Consortium Conference,

2006 Biometrics Symposium, pages 1-6. IEEE, 2006.

[94] Y. Skadberg and J. R. Kimmel. Visitors’ flow experience while browsing a

web site: its measurement, contributing factors and consequences. Com

puters in Human Behavior, 20(3):403-422, 2004.

113

[95] H. Stijper, J. Richter, E. Over, J. Smeets, and M. Frens. Statistics predict

kinematics of hand movements during everyday activity. Journal of Motor

Behavior, 41:3-9, 2009.

[96] R. W. Soukoreff and I. S. MacKenzie. Towards a standard for pointing

device evaluation, perspectives on 27 years of Fitts’ law research in hci.

Int. J. Hum.-Comput. Stud., 61:751-789, December 2004.

[97] M. Spiliopoulou. Web usage mining for web site evaluation. Commun.

ACM, 43:127-134, August 2000.

[98] R. C. Sprinthall. Basic Statistial Analysis. Prentice Hall, 2011.

[99] Amazon.com: number of active customer accounts 2007-

2013. http://www.statista.com/statistics/237810/

number-of-active-amazon-customer-accounts-worldwide/.

[100] E. Stobert, A. Forget, S. Chiasson, et al. Exploring usability effects of in

creasing security in click-based graphical passwords. In Annual Computer

Security Applications Conference (ACSAC), 2010.

[101] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web search based

on user profile constructed without any effort from users. In Proceedings

of the 13th international conference on World Wide Web, WWW ’04, pages

675-684, 2004.

[102] S. Tong. Support vector machine active learning for image retrieval. In Pro

ceedings of the ninth ACM international conference on Multimedia, 2001.

[103] P. C. Van Oorschot, A. Salehi-Abari, and J. Thorpe. Purely automated

attacks on passpoints-style graphical passwords. Trans. Info. For. Sec.,

5(3):393-405, Sept. 2010.

[104] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

114

http://www.statista.com/statistics/237810/

[105] V. N. Vladimir. The Nature of Statistical Learning Theory. Springer, Berline

Heidelberg, New York, 1995.

[106] A. T. Welford. Fundamentals of Skill. Methuen, London, 1968.

[107] J. 0. Wobbrock, E. Cutrell, S. Harada, and I. S. MacKenzie. An error model

for pointing based on Fitts’ law. In ACM CHI’08, pages 1613-1622, 2008.

[108] J. O. Wobbrock, K. Shinohara, and A. Jansen. The effects of task dimen

sionality, endpoint deviation, throughput calculation, and experiment design

on pointing measures and models. In ACM CHT11, pages 1639-1648,

2011.

[109] Z. Xu, K. Bai, and S. Zhu. Taplogger: inferring user inputs on smartphone

touchscreens using on-board motion sensors. In WISEC'12, pages U S -

124, 2012.

[110] R. V. Yampolskiy and V. Govindaraju. Behavioural biometrics: a survey and

classification. Int. J. Biometrics, 1 (1):81—113, 2008.

[111] H. Yang and X. Xu. Bias towards regular configuration in 2D pointing. In

ACM CHT10, pages 1391-1400, 2010.

[112] S. Zahid, M. Shahzad, S. A. Khayam, and M. Farooq. Keystroke-based user

identification on smart phones. In Proceedings of the 12th International

Symposium on Recent Advances in Intrusion Detection, RAID’09, pages

224-243, 2009.

[113] S. Zhai. Characterizing computer input with Fitts’ law parameters: the in

formation and non-information aspects of pointing. Int. J. Hum.-Comput.

Stud., 61:791-809, December 2004.

115

[114] S. Zhai, J. Kong, and X. Ren. Speed-accuracy tradeoff in Fitts’ law tasks-on

the equivalency of actual and nominal pointing precision. Int’IJ. ofHuman-

Computer Studies, 61(6):823-856, 2004.

[115] Y. Zhang, F. Monrose, and M. K. Reiter. The security of modern password

expiration: An algorithmic framework and empirical analysis. In ACM Con

ference on Computer and Communications Security (CCS), 2010.

[116] N. Zheng, A. Paloski, and H. Wang. An efficient user verification system

via mouse movements. In ACM CCS’11, pages 139-150, 2011.

116

	Exploiting behavioral biometrics for user security enhancements
	Recommended Citation

	00001.tif

