15 research outputs found

    H i kinematics, mass distribution and star formation threshold in NGC 6822, using the SKA pathfinder KAT-7

    Get PDF
    We present high sensitivity H I observations of NGC 6822, obtained with the Karoo Array Telescope (KAT-7). We study the kinematics, the mass distribution and the star formation thresholds. The KAT-7 short baselines and low system temperature make it sensitive to large-scale, low surface brightness emission. The observations detected ∼ 23 per cent more flux than previous Australian Telescope Compact Array observations. We fit a tilted ring model to the H I velocity field to derive the rotation curve (RC). The KAT-7 observations allow the measurement of the rotation curve of NGC 6822 out to 5.8 kpc, ∼1 kpc further than existing measurements. NGC 6822 is seen to be dark matter dominated at all radii. The observationally motivated pseudo-isothermal dark matter (DM) halo model reproduces well the observed RC while the Navarro Frank-White DM model gives a poor fit to the data. We find the best-fitting mass-to-light ratio (M/L) of 0.12 ± 0.01 which is consistent with the literature. The modified Newtonian dynamics gives a poor fit to our data. We derive the star formation threshold in NGC 6822 using the H I and H α data. The critical gas densities were calculated for gravitational instabilities using the Toomre-Q criterion and the cloud-growth criterion. We found that in regions of star formation, the cloud-growth criterion explains star formation better than the Toomre-Q criterion. This shows that the local shear rate could be a key player in cloud formation for irregular galaxies such as NGC 6822

    an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    © Copyright owned by the author(s). MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities

    MeerKAT-64 discovers wide-spread tidal debris in the nearby NGC 7232 galaxy group

    Get PDF
    We report the discovery of large amounts of previously undetected cold neutral atomic hydrogen (H I) around the core triplet galaxies in the nearby NGC 7232 galaxy group with MeerKAT. With a physical resolution of ∼1 kpc, we detect a complex web of low-surface-brightness HI emission down to a 4σ column density level of ∼1 × 1019 cm-2 (over 44 km s-1). The newly discovered HI streams extend over ∼20 arcmin corresponding to 140 kpc in projection. This is approximately three times the HI extent of the galaxy triplet (52 kpc). The HI debris has an HI mass of ∼6.6 × 109 M⊙, more than 50 per cent of the total HI mass of the triplet. Within the galaxy triplet, NGC 7233 and NGC 7232 have lost a significant amount of HI while NGC 7232B appears to have an excess of HI. TheHI deficiency in NGC 7232 and NGC 7233 indicates that galaxÿCgalaxy interaction in the group concentrates on this galaxy pair while the other disc galaxies have visited them over time. In comparison to the AMIGA sample of isolated galaxies, we find that with regards to its total HI mass the NGC 7232/3 galaxy triplet is not HI-deficient. Despite the many interactions associated to the triplet galaxies, no HI seems to have been lost from the group (yet)

    An overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with HI masses from 10^6 to ~10^{11} M_sun, and luminosities from M_R ~ -12 to M_R ~ -22. The sample is selected to uniformly cover the available range in log(M_HI). Our extremely deep observations, down to HI column density limits of well below 10^{18} cm^{-2} - or a few hundred times fainter than the typical HI disks in galaxies - will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modelling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT's capabilities

    The extended H I halo of NGC 4945 as seen by MeerKAT

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Observations of the neutral atomic hydrogen (H I) in the nuclear starburst galaxy NGC 4945 with MeerKAT are presented. We find a large amount of halo gas, previously missed by H I observations, accounting for 6.8 per cent of the total H I mass. This is most likely gas blown into the halo by star formation. Our maps go down to a 3σ column density level of 5 × 1018 cm−2. We model the H I distribution using tilted-ring fitting techniques and find a warp on the galaxy’s approaching and receding sides. The H I in the northern side of the galaxy appears to be suppressed. This may be the result of ionization by the starburst activity in the galaxy, as suggested by a previous study. The origin of the warp is unclear but could be due to past interactions or ram pressure stripping. Broad, asymmetric H I absorption lines extending throughout the H I emission velocity channels are present towards the nuclear region of NGC 4945. Such broad lines suggest the existence of a nuclear ring moving at a high circular velocity. This is supported by the clear rotation patterns in the H I absorption velocity field. The asymmetry of the absorption spectra can be caused by outflows or inflows of gas in the nuclear region of NGC 4945. The continuum map shows small extensions on both sides of the galaxy’s major axis that might be signs of outflows resulting from the starburst activity. © The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society.RI acknowledges financial support from grant RTI2018-096228-B-C31 (MCIU/AEI/FEDER,UE) and from the State Agency for Research of the Spanish Ministry of Science, Innovation and Universities through the ‘Center of Excellence Severo Ochoa’ awarded to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), from the grant IAA4SKA (Ref. R18-RT-3082) from the Economic Transformation, Industry, Knowledge and Universities Council of the Regional Government of Andalusia and the European Regional Development Fund from the European Union. The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. The financial assistance of the South African Radio Astronomy Observatory (SARAO) towards this research is hereby acknowledged (www.sarao.ac.za). At Ruhr University Bochum, this research is supported by BMBF Verbundforschung grant 05A20PC4 and by DFG Sonderforschungsbereich SFB1491. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grant agreement no. 882793, project name MeerGas. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no.679627; project name FORNAX).Peer reviewe

    MIGHTEE-H i: possible interactions with the galaxy NGC 895

    Get PDF
    The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (H i) is an excellent way to trace these interactions. Here, we present H i observations of the spiral galaxy NGC 895, which was previously thought to be isolated. High-sensitivity H i observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms and the two newly discovered H i companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_J022138.1-052631, which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC 895 is an actively star-forming galaxy with a SFR of 1.75 ± 0.09[M⊙/yr], a value typical for high-stellar mass galaxies on the star-forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC 895, and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both H i and optical to reveal a more complete picture of galaxy environments

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    MeerKAT-64 discovers wide-spread tidal debris in the nearby NGC 7232 galaxy group

    No full text
    Full list of authors: Namumba, B.; Koribalski, B. S.; Józsa, G. I. G.; Lee-Waddell, K.; Jones, M. G.; Carignan, C.; Verdes-Montenegro, L.; Ianjamasimanana, R.; de Blok, W. J. G.; Cluver, M.; Garrido, J.; Sánchez-Expósito, S.; Ramaila, A. J. T.; Thorat, K.; Andati, L. A. L.; Hugo, B. V.; Kleiner, D.; Kamphuis, P.; Serra, P.; Smirnov, O. M.; Maccagni, F. M.; Makhathini, S.; Molnár, D. Cs.; Perkins, S.; Ramatsoku, M.; White, S. V.; Loi, F.We report the discovery of large amounts of previously undetected cold neutral atomic hydrogen (H I) around the core triplet galaxies in the nearby NGC 7232 galaxy group with MeerKAT. With a physical resolution of ∼1 kpc, we detect a complex web of low-surface-brightness H I emission down to a 4σ column density level of ∼1 × 1019 cm−2 (over 44 km s−1). The newly discovered H I streams extend over ∼20 arcmin corresponding to 140 kpc in projection. This is approximately three times the H I extent of the galaxy triplet (52 kpc). The H I debris has an H I mass of ∼6.6 × 109 M⊙, more than 50 per cent of the total H I mass of the triplet. Within the galaxy triplet, NGC 7233 and NGC 7232 have lost a significant amount of H I while NGC 7232B appears to have an excess of H I. The H I deficiency in NGC 7232 and NGC 7233 indicates that galaxy–galaxy interaction in the group concentrates on this galaxy pair while the other disc galaxies have visited them over time. In comparison to the AMIGA sample of isolated galaxies, we find that with regards to its total H I mass the NGC 7232/3 galaxy triplet is not H I-deficient. Despite the many interactions associated to the triplet galaxies, no H I seems to have been lost from the group (yet). © 2021 The Author(s).The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. BN’s research is supported by the South African Radio Astronomy Observatory (SARAO). We acknowledge the Inter-University Institute for Data Intensive Astronomy (IDIA) for supporting us with the data intensive cloud for data processing. IDIA is a South African university partnership involving the University of Cape Town, the University of Pretoria, and the University of the Western Cape. BN acknowledges financial support from the CSIC Program of Scientific Cooperation for Development i-COOP+2019. The research of OS is supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. PK is partially supported by the BMBF project 05A17PC2 for D-MeerKAT. LVM, MGJ, and BN acknowledge financial support from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). BN acknowledges the discussion with the AMIGA team at IAA regarding data reduction and analysis. LVM, MJ, SSE, and JG acknowledge as well support from the grants AYA2015-65973-C3-1-R (MINECO/FEDER, UE) and RTI2018-096228-B-C31 (MCIU/AEI/FEDER,UE). MGJ fellowship was supported by a Juan de la Cierva formación fellowship. The work of WJGdB has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882793/MeerGas). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 679627; project name FORNAX). MEC is a recipient of an Australian Research Council Future Fellowship (project No. FT170100273) funded by the Australian Government.Peer reviewe
    corecore