6 research outputs found

    Remote machine mode detection in cold forging using vibration signal

    No full text
    Detecting machine mode can allow smarter process monitoring systems and more accurate fault prediction without external information. A remote machine monitoring system was installed on a cold heading machine in the factory of an automotive fastener manufacturing company. The process monitoring system was non-intrusive and was designed to measure vibration. The end goal of the study was to predict tool wear, but part classification was required first, as the machine produced multiple parts which produced different vibration signals. The collected vibration data was processed using wavelet transform and passed through a convolutional neural network for part classification. This method achieved part classification accuracy as high as 86% when looking at data for a 1-month period. The results show that meaningful classification features are present in the data using the process monitoring system as designed.11Nscopu

    FIGURE 2 in Taxonomic Review of the Subtribe Athouina Candèze, 1859 (Coleoptera, Elateridae, Dendrometrinae, Dendrometrini) in Korea

    No full text
    FIGURE 2. SEM images of Cidnopus nigronitidus sp. nov. A: Pronotum. B: Punctures of median portion of pronotum. C: Punctures of anterior portion of pronotum. D: Head. E: Punctures of median portion of head. F: Frontal view of the head. G: 2 nd to 4 th antennomeres, male. H: Hind angle of pronotum. I: Posterior margin of pronotum. J: Scutellum. K: Lateral view of scutellum. L: Prosternum. M: Lateral view of prosternal process. N: Anterior portion of hypomeron. O: Right elytron. P: Hind coxal plate. Q: Maxillary palpi. R: Fore claw

    Eltrombopag as an Allosteric Inhibitor of the METTL3-14 Complex Affecting the m6A Methylation of RNA in Acute Myeloid Leukemia Cells

    No full text
    N6A-methyladenosine (m6A) post-transcriptional modification, the most abundant internal RNA modification, is catalyzed by the METTL3-14 methyltransferase complex. Recently, attention has been drawn to the METTL3-14 complex regarding its significant roles in the pathogenesis of acute myeloid leukemia (AML), attracting the potential of novel therapeutic targets for the disease. Herein, we report the identification and characterization of eltrombopag as a selective allosteric inhibitor of the METTL3-14 complex. Eltrombopag exhibited selective inhibitory activity in the most active catalytic form of the METTL3-14 complex by direct binding, and the mechanism of inhibition was confirmed as a noncompetitive inhibition by interacting at a putative allosteric binding site in METTL3, which was predicted by cavity search and molecular docking studies. At a cellular level, eltrombopag displayed anti-proliferative effects in the relevant AML cell line, MOLM-13, in correlation with a reduction in m6A levels. Molecular mechanism studies of eltrombopag using m6A-seq analysis provided further evidence of its cellular function by determining the hypomethylation of leukemogenic genes in eltrombopag-treated MOLM-13 cells and the overlapping of the pattern with those of METTL3-knockdown MOLM-13 cells. In conclusion, eltrombopag was first disclosed as a functional METTL3-14 allosteric inhibitor in AML cells, which could be utilized for the further development of novel anti-AML therapy

    HO-1089 and HO-1197, Novel Herbal Formulas, Have Antitumor Effects via Suppression of PLK1 (Polo-like Kinase 1) Expression in Hepatocellular Carcinoma

    No full text
    The treatment for hepatocellular carcinoma (HCC), a severe cancer with a very high mortality rate, begins with the surgical resection of the primary tumor. For metastasis or for tumors that cannot be resected, sorafenib, a multi-tyrosine protein kinase inhibitor, is usually the drug of choice. However, typically, neither resection nor sorafenib provides a cure. The drug discovery strategy for HCC therapy is shifting from monotherapies to combination regimens that combine an immuno-oncology agent with an angiogenesis inhibitor. Herbal formulas can be included in the combinations used for this personalized medicine approach. In this study, we evaluated the HCC anticancer efficacy of the new herbal formula, HO-1089. Treatment with HO-1089 inhibited HCC tumor growth by inducing DNA damage-mediated apoptosis and by arresting HCC cell replication during the G2/M phase. HO-1089 also attenuated the migratory capacity of HCC cells via the inhibition of the expression of EMT-related proteins. Biological pathways involved in metabolism and the mitotic cell cycle were suppressed in HO-1089-treated HCC cells. HO-1089 attenuated expression of the G2/M phase regulatory protein, PLK1 (polo-like kinase 1), in HCC cells. HCC xenograft mouse models revealed that the daily oral administration of HO-1089 retarded tumor growth without systemic toxicity in vivo. The use of HO-1197, a novel herbal formula derived from HO-1089, resulted in statistically significant improved anticancer efficacy relative to HO-1089 in HCC. These results suggest that HO-1089 is a safe and potent integrated natural medicine for HCC therapy

    SRSF6 Regulates the Alternative Splicing of the Apoptotic Fas Gene by Targeting a Novel RNA Sequence

    No full text
    Alternative splicing (AS) is a procedure during gene expression that allows the production of multiple mRNAs from a single gene, leading to a larger number of proteins with various functions. The alternative splicing (AS) of Fas (Apo-1/CD95) pre-mRNA can generate membrane-bound or soluble isoforms with pro-apoptotic and anti-apoptotic functions. SRSF6, a member of the Serine/Arginine-rich protein family, plays essential roles in both constitutive and alternative splicing. Here, we identified SRSF6 as an important regulatory protein in Fas AS. The cassette exon inclusion of Fas was decreased by SRSF6-targeting shRNA treatment, but increased by SRSF6 overexpression. The deletion and substitution mutagenesis of the Fas minigene demonstrated that the UGCCAA sequence in the cassette exon of the Fas gene causes the functional disruption of SRSF6, indicating that these sequences are essential for SRSF6 function in Fas splicing. In addition, biotin-labeled RNA-pulldown and immunoblotting analysis showed that SRSF6 interacted with these RNA sequences. Mutagenesis in the splice-site strength alteration demonstrated that the 5′ splice-site, but not the 3′ splice-site, was required for the SRSF6 regulation of Fas pre-mRNA. In addition, a large-scale RNA-seq analysis using GTEX and TCGA indicated that while SRSF6 expression was correlated with Fas expression in normal tissues, the correlation was disrupted in tumors. Furthermore, high SRSF6 expression was linked to the high expression of pro-apoptotic and immune activation genes. Therefore, we identified a novel RNA target with 5′ splice-site dependence of SRSF6 in Fas pre-mRNA splicing, and a correlation between SRSF6 and Fas expression
    corecore