44 research outputs found

    In vivo and ex vivo measurements: noninvasive assessment of alcoholic fatty liver using 1H-MR spectroscopy

    Get PDF
    PURPOSEWe aimed to evaluate the ability of 1H-magnetic resonance spectroscopy (1H-MRS) to detect and quantify hepatic fat content in vivo and ex vivo in an experimental rat model of alcoholic fatty liver using histopathology, biochemistry, and laboratory analyses as reference.METHODSAlcoholic fatty liver was induced within 48 hours in 20 Lewis rats; 10 rats served as control. Intrahepatic fat content determined by 1H-MRS was expressed as the percent ratio of the lipid and water peaks and was correlated with intrahepatic fat content determined histologically and biochemically. Liver enzymes were measured in serum.RESULTSFatty liver could be detected in vivo as well as ex vivo using 1H-MRS, in all 20 animals. Histologic analysis showed a fatty liver in 16 of 20 animals. Histology and 1H-MRS results were highly correlated (in vivo, r=0.93, P = 0.0005; ex vivo, r=0.92, P = 0.0006). Also a strong correlation was noted between in vivo 1H-MRS measurements and the fat content determined biochemically (r=0.96, P = 0.0003). Ex vivo results showed a similarly strong correlation between 1H-MRS and biochemistry (r=0.89, P = 0.0011).CONCLUSION1H-MRS can be carried out in ex vivo models, as well as in vivo, to detect and quantify intrahepatic fat content in the acute fatty liver

    Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase

    Get PDF
    Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression

    Muto Sanji, A Pioneer of Japanese Industrial Familism

    Get PDF
    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload

    A Novel Function for 15-Lipoxygenases in Cholesterol Homeostasis and CCL17 Production in Human Macrophages

    Get PDF
    Arachidonate 15-lipoxygenase (ALOX15) and arachidonate 15-lipoxygenase, type B (ALOX15B) catalyze the dioxygenation of polyunsaturated fatty acids and are upregulated in human alternatively activated macrophages (AAMs) induced by Th2 cytokine interleukin-4 (IL-4) and/or interleukin-13. Known primarily for roles in bioactive lipid mediator synthesis, 15-lipoxygenases (15-LOXs) have been implicated in various macrophage functions including efferocytosis and ferroptosis. Using a combination of inhibitors and siRNAs to suppress 15-LOX isoforms, we studied the role of 15-LOXs in cellular cholesterol homeostasis and immune function in naïve and AAMs. Silencing or inhibiting the 15-LOX isoforms impaired sterol regulatory element binding protein (SREBP)-2 signaling by inhibiting SREBP-2 processing into mature transcription factor and reduced SREBP-2 binding to sterol regulatory elements and subsequent target gene expression. Silencing ALOX15B reduced cellular cholesterol and the cholesterol intermediates desmosterol, lanosterol, 24,25-dihydrolanosterol, and lathosterol as well as oxysterols in IL-4-stimulated macrophages. In addition, attenuating both 15-LOX isoforms did not generally affect IL-4 gene expression but rather uniquely impacted IL-4-induced CCL17 production in an SREBP-2-dependent manner resulting in reduced T cell migration to macrophage conditioned media. In conclusion, we identified a novel role for ALOX15B, and to a lesser extent ALOX15, in cholesterol homeostasis and CCL17 production in human macrophages

    LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus

    Get PDF
    Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear

    Redoxregulation der Protein-Serin/Threonin-Phosphatase Calcineurin

    No full text
    Reactive oxygen species (ROS) are now recognized as important mediators of the cellular responses to environmental changes. Reversible protein phosphorylation appears to be one of the major intracellular signal transduction mechanisms modulated by ROS. Calcineurin is a protein serine/threonine phosphatase involved in calcium-dependent signaling. In this work the mechanisms whereby calcineurin activity is modulated by ROS were investigated. H2O2 in submillimolar concentrations inhibited calcineurin. This inhibition was partly reversible by DTT and thioredoxin and involved oxidation of protein cysteines. In tissue and cell homogenates superoxide, but not other ROS was found to be an effective calcineurin inhibitor. Inhibition of calcineurin activity by superoxide was calcium-dependent. NO antagonized superoxide action on calcineurin. By modification of calcineurin isolation procedure aiming to avoid enzyme oxidation milligram amounts of highly active porcine calcineurin were isolated. Porcine calcineurin was very sensitive to inhibition by superoxide in a calcium and calmodulin-dependent manner. NO protected calcineurin against inhibition by superoxide but not by H2O2. Superoxide-inhibited calcineurin was reactivated by ascorbate and Fe2+/ascorbate suggesting oxidation of Fe2+ in the enzyme active center as the mechanism of superoxide inhibition of calcineurin. Metal analysis and EPR spectroscopy confirmed the hypothesis that native, active calcineurin has Fe2+-Zn2+ binuclear center in the enzyme active site and oxidative inactivation of the enzyme results in its conversion to Fe3+-Zn2+ center and partial Fe release from the enzyme. Treatment of Jurkat T-lymphoma cells with oxidants resulted in inhibition of calcineurin activity and blockade of calcineurin-NFAT signaling cascade. In addition, endogenous ROS generation in activated macrophages caused calcineurin inhibition, providing evidence that calcineurin could be an endogenous effector of ROS-mediated signaling

    Pharmacological activation of p53 during human monocyte to macrophage differentiation attenuates their pro-inflammatory activation by TLR4, TLR7 and TLR8 agonists

    No full text
    Simple Summary: Pharmacological activation of tumor suppressor p53 is a promising therapeutic strategy for a range of hematologic and solid cancers. Whether p53 activation augments or suppresses anti-tumor innate immunity is less understood. Here we show that treatment of differentiating human macrophages with a p53 activator idasanutlin suppresses their inflammatory responses to activators of toll-like receptors (TLR) -4 and -7/8. This is accompanied by reduced expression of TLR7, TLR8, as well as TLR4 co-receptor CD14. These data help evaluating the possibilities of combining p53-targeting and immunostimulatory anti-cancer therapies. Abstract: The transcription factor p53 has well-recognized roles in regulating cell cycle, DNA damage repair, cell death, and metabolism. It is an important tumor suppressor and pharmacological activation of p53 by interrupting its interaction with the ubiquitin E3 ligase mouse double minute 2 homolog (MDM2) is actively explored for anti-tumor therapies. In immune cells, p53 modulates inflammatory responses, but the impact of p53 on macrophages remains incompletely understood. In this study, we used the MDM2 antagonist idasanutlin (RG7388) to investigate the responses of primary human macrophages to pharmacological p53 activation. Idasanutlin induced a robust p53-dependent transcriptional signature in macrophages, including several pro-apoptotic genes. However, idasanutlin did not generally sensitize macrophages to apoptosis, except for an enhanced response to a Fas-stimulating antibody. In fully differentiated macrophages, idasanutlin did not affect pro-inflammatory gene expression induced by toll-like receptor 4 (TLR4), TLR3, and TLR7/8 agonists, but inhibited interleukin-4-induced macrophage polarization. However, when present during monocyte to macrophage differentiation, idasanutlin attenuated inflammatory responses towards activation of TLR4 and TLR7/8 by low doses of lipopolysaccharide or resiquimod (R848). This was accompanied by a reduced expression of CD14, TLR7, and TLR8 in macrophages differentiated in the presence of idasanutlin. Our data suggest anti-inflammatory effects of pharmacological p53 activation in differentiating human macrophages

    Oxidized LDL attenuates apoptosis in monocytic cells by activating ERK signaling

    No full text
    Low concentrations of oxidized low density lipoprotein (OxLDL) are cytoprotective for phagocytes, although the underlying mechanisms remain unclear. We investigated signaling pathways used by OxLDL to attenuate apoptosis in monocytic cells. OxLDL at 25–50 μg/ml inhibited staurosporine-induced apoptosis in THP-1 cells and mouse peritoneal macrophages, and it was cytoprotective in human primary monocytes upon serum withdrawal. Attenuated cell demise was reversed by blocking extracellular signal-regulated kinase (ERK) signaling. Translocation of cytochrome c to the cytosol was attenuated by OxLDL, which again demanded ERK signaling. Analysis of Bcl-2 family proteins revealed phosphorylation of Bad at serine 112 as well as ERK-dependent inhibition of Mcl-1 degradation. Although the formation of reactive oxygen species (ROS) is an established signal generated by OxLDL, ROS scavengers did not interfere with cell protection by OxLDL. Thus, activation of the ERK signaling pathway by OxLDL is important to protect phagocytes from apoptosis

    AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages

    No full text
    5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) is an established pharmacological activator of AMP-activated protein kinase (AMPK). Both, AICAR and AMPK were reported to attenuate inflammation. However, AICAR is known for many AMPK-independent effects, although the mechanisms remain incompletely understood. Here we report a potent suppression of lipopolysaccharide (LPS)-induced inflammatory gene expression by AICAR in primary human macrophages, which occurred independently of its conversion to AMPK-activating 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate. Although AICAR did not interfere with activation of cytosolic signalling cascades and nuclear translocation of nuclear factor - κB (NFκB) by LPS, it prevented the recruitment of NFκB and RNA polymerase II to target gene promoters. AICAR also inhibited signal transducer and activator of transcription 3 (STAT3)-dependent induction of interleukin (IL) IL-6 and IL-10 targets, while leaving STAT6 and HIF1α-dependent gene expression in IL-4 and dimethyloxalylgylcine-treated macrophages intact. This points to a transcription factor-specific mode of action. Attenuated gene expression correlated with impaired NFκB and STAT3, but not HIF-binding in electrophoretic mobility shift assays in vitro. Conclusively, AICAR interferes with DNA binding of NFκB and STAT3 to modulate inflammatory responses

    Exploring the role of ATP-citrate lyase in the immune system

    No full text
    Studies over the past decade have revealed that metabolism profoundly influences immune responses. In particular, metabolism causes epigenetic regulation of gene expression, as a growing number of metabolic intermediates are substrates for histone post-translational modifications altering chromatin structure. One of these substrates is acetyl-coenzyme A (CoA), which donates an acetyl group for histone acetylation. Cytosolic acetyl-CoA is also a critical substrate for de novo synthesis of fatty acids and sterols necessary for rapid cellular growth. One of the main enzymes catalyzing cytosolic acetyl-CoA formation is ATP-citrate lyase (ACLY). In addition to its classical function in the provision of acetyl-CoA for de novo lipogenesis, ACLY contributes to epigenetic regulation through histone acetylation, which is increasingly appreciated. In this review we explore the current knowledge of ACLY and acetyl-CoA in mediating innate and adaptive immune responses. We focus on the role of ACLY in supporting de novo lipogenesis in immune cells as well as on its impact on epigenetic alterations. Moreover, we summarize alternative sources of acetyl-CoA and their contribution to metabolic and epigenetic regulation in cells of the immune system
    corecore