175 research outputs found

    Fabrication and characterization of thin, self‐supporting germanium single crystals

    Get PDF
    Thin Gesingle crystals (≤1 μm) up to 4 mm in diameter have been fabricated from epitaxialGefilmsgrown by atmospheric pressurechemical vapor deposition on Si(100) wafers. The thin Ge windows are formed by chemically etching away both the Si substrate and the region of the Gefilm near the interface that contains misfit dislocations associated with heteroepitaxialgrowth and relaxation of the Gefilms. The resulting Gefilms are comparable in crystalline quality to bulk Ge wafers, as indicated by ion channeling studies

    Установление границ охранной зоны линейного сооружения – магистральный газопровод "НГПЗ - Парабель"

    Get PDF
    Составлено графическое описание местоположения границ зон с особыми условиями использования территорий границ охранной зоны линейного сооружения – магистральный газопровод "НГПЗ - Парабель".A graphic description of the location of the boundaries of the zones with special conditions for the use of the territories of the boundaries of the protection zone of the linear structure – "the NGPZ-Parabel" gas pipeline has been compiled

    Irradiation effects on microstructure change in nanocrystalline ceria – Phase, lattice stress, grain size and boundaries

    Get PDF
    With a wide variety of applications in numerous industries, ranging from biomedical to nuclear, ceramics such as ceria are key engineering materials. It is possible to significantly alter the materials functionality and therefore its applications by reducing the grain size to the nanometer size regime, at which point the unique varieties of grain boundaries and associated interfaces begin to dominate the material properties. Nanocrystalline films of cubic ceria deposited onto Si substrates have been irradiated with 3 MeV Au+ ions at temperatures of 300 and 400 K to evaluate their response to irradiation. It was observed that the films remained phase stable. Following a slight stress relief stage at low damage levels, the overall lattice is extremely stable up to high irradiation dose of ~34 displacements per atom. The grains were also observed to undergo a temperature-dependent grain growth process upon ion irradiation. This is attributed to a defect-driven mechanism in which the diffusion of defects from the collision cascade is critical. Formation of dislocations that terminate and stabilize at symmetric grain boundaries may be the limiting factor in the grain growth and overall energy reduction of the system. Utilizing ion modification, possible improvement of the adhesion of thin films and reduction of the probability of detrimental effects of stress-induced problems are discussed

    SILICON-ON-INSULATOR OPTICAL RIB WAVE-GUIDE LOSS AND MODE CHARACTERISTICS

    No full text
    corecore