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Abstract

With a wide variety of applications in numerous industries, ranging from biomedical to nuclear, ceramics such as ceria are key
engineering materials. It is possible to significantly alter the materials functionality and therefore its applications by reducing the grain
size to the nanometer size regime, at which point the unique varieties of grain boundaries and associated interfaces begin to dominate the
material properties. Nanocrystalline films of cubic ceria deposited onto Si substrates have been irradiated with 3 MeV Au+ ions at tem-
peratures of 300 and 400 K to evaluate their response to irradiation. It was observed that the films remained phase stable. Following a
slight stress relief stage at low damage levels, the overall lattice is extremely stable up to high irradiation dose of �34 displacements per
atom. The grains were also observed to undergo a temperature-dependent grain growth process upon ion irradiation. This is attributed to
a defect-driven mechanism in which the diffusion of defects from the collision cascade is critical. Formation of dislocations that terminate
and stabilize at symmetric grain boundaries may be the limiting factor in the grain growth and overall energy reduction of the system.
Utilizing ion modification, possible improvement of the adhesion of thin films and reduction of the probability of detrimental effects of
stress-induced problems are discussed.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramics are important engineering materials, with prac-
tical applications in numerous industries. In the automotive
industry, ceramics may be used in catalytic convertor tech-
nologies, as oxygen sensors and as high-performance brake
discs. The binary oxide ceramics such as HfO2, ZrO2 and
CeO2 are also being explored as potential high-k dielectrics
[1–4] in the electronics industry to enable continuous reduc-
tion in scaling of devices. Ceramics are also heavily utilized
in the nuclear industry, with UO2 and PuO2 being used as

fuel materials, SiC as a component in TRISO and QUADR-
ISO fuel pellets, and ZrO2 and CeO2 as possible components
in inert matrix fuels, such as rock-like oxide [5] or cermet
[6,7] fuels, or as part of high-level nuclear waste forms
[8,9]. Ceramics may also be used as hydrophilic, high-
wear-resistant coatings for replacement joints in biomedical
applications [10].

The ceramic ceria (CeO2) has potential uses in many of the
applications described above. Due to its exceptional mixed
electronic–ionic conduction, CeO2 is widely used in solid
oxide fuel cells. CeO2 has a cubic fluorite structure from
room temperature up to its melting point of �3000 K, and
is isostructural in nature with UO2 and PuO2 [11]. CeO2

exhibits similar irradiation defect behaviour as UO2 and
PuO2 [11], and it is therefore often used as a non-radioactive
surrogate in studies of nuclear fuel systems in which fuel
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systems are typically composed of micron-sized (or greater)
grains of the fuel material, e.g. UO2. However, by reducing
the grain size of the material to the nanosized regime, it is
possible to tailor the materials properties [12–15]. Nano-
structured ceramic materials may provide improved opera-
tional fuel and cladding performance and better response
in loss-of-coolant accidents in terms of enhanced radiation
resistance, improved mechanical strength, reduced cracking
and higher thermal conductivity due to the high density of
interfaces and grain boundaries (GBs).

GBs are two-dimensional defects, and can be approxi-
mately characterized as low

P
boundaries, general GBs

or misorientated GBs [16]. Here,
P

refers to the reciprocal
density of the coincident site in accordance with the coinci-
dent site lattice (CSL) model [17]. Thus, by definition, CSL
GBs are symmetric defects in that neighbouring grains with
a common GB are exact mirror images about the GB, as are
low-angle GBs. Misorientated GBs do not show any sym-
metry of neighbouring grains, and are thus asymmetric in
nature.

Low
P

GBs may exhibit interesting mechanical and
kinetic properties such as high resistance to sliding, fracture
and corrosion [17]. In the context of nuclear fuels, GBs
may heavily influence the material properties that govern
fuel performance. In particular, fission gases such as Xe
and Kr, which have low solid solubility in materials [18],
may migrate to the GBs and agglomerate, resulting in the
nucleation of bubbles, which may be detrimental to fuel
performance and structural integrity. Interface structure
and GB property may play important roles in bubble for-
mation and subsequent release of fission gases.

As biomedical coatings, ceramics are deposited onto a
biocompatible substrate (e.g. Ti) in high-friction/wear
regions (e.g. ball joints). The requirements for this applica-
tion are different from those of the nuclear applications dis-
cussed above. The material must be extremely resistant to
wear, biologically inert and hydrophilic [10]. Typically, thin
films of the ceramic are deposited onto the substrate. One
technique that is used for thin-film deposition for biomedical
applications is that of ion-beam-assisted deposition (IBAD)
[10]. In this technique, low-energy ions (61500 eV) are used
to effectively stitch engineered nanocrystals to the substrate.
This technique is advantageous and results in the formation
of ultrahydrophilic surfaces via the Lotus effect, enhance-
ment of film adhesion [10] and reduction of the stress in
the film by eliminating stress-related problems such as buck-
ling, microcracking and peeling. The adhesion of the films
can be improved by in situ removal of monolayers of con-
taminants prior to deposition, increasing the reactivity of
the substrate/coating atoms, generating a nanoscopically
rough surface at the interface due to ion beam mixing,
increasing nucleation density, enhancing surface mobility
of the coating atoms or decreasing the formation of
interfacial voids, or a combination of the above [10]. IBAD
may also be successfully utilized to control the surface
morphology, density, stress level, crystallinity, grain size
and orientation, and chemical composition.

In the work presented here, thin films of nanocrystalline
ceria have been irradiated with heavy ions in order to eval-
uate the response of the nanocrystalline ceria to radiation
damage for nuclear applications and the possibility of
using ion beams to engineer the thin films for other appli-
cations, such as biomedical.

2. Experimental methods

Thin films of approximately 330 nm thick, nanostruc-
tured CeO2 (NSC) were grown on (001) silicon substrates
with an �5 nm buffer layer of SiO2 using an ion-beam-
assisted deposition system (Mill Lane engineering, Lowell,
MA) at the Nanotechnology Laboratory at the University
of Nebraska Medical Center [10]. The thin films were then
irradiated with 3.0 MeV Au+ ions up to fluence of
6.4 � 1015 ions cm�2 at temperatures of 300 and 400 K.
The ion flux was kept constant during the irradiation
(approximately 1011 ions cm�2 s�1 to reduce beam heating
effects on the sample) and the beam was rastered over the
surface to ensure a uniform irradiation. The ion beam
energy was chosen such that the energy deposited into
the film was maximized whilst minimizing the Au concen-
tration in the thin film. The corresponding displacements
per atom (dpa) values were calculated using SRIM
2008.01 full-cascade simulations. The parameters used for
the simulations were a sample density of �6.3 g cm�3, with
threshold displacement energies of 27 and 56 eV for the O
and Ce atoms respectively [19,20]. This gave an average
fluence-to-dpa conversion factor of 0.54 dpa per 1014

ions cm�2 [21].
Post-irradiation characterization was performed using

the complementary techniques of Rutherford backscatter-
ing spectroscopy (RBS), transmission electron microscopy
(TEM) and glancing incidence X-ray diffraction (GIXRD).
Both the ion irradiation and ion beam analysis was per-
formed using the 3.0 MV tandem accelerator facilities in
the Environmental Molecular Science Laboratory (EMSL),
located at Pacific Northwest National Laboratory
(PNNL). Characterization of the elemental composition
was performed using RBS in random orientation utilizing
a 2.0 MeV He+ beam with two Si detectors located at scat-
tering angles of 150� and 165� relative to the incoming ion
beam.

Cross-sectional TEM specimens were prepared by
mechanically polishing down to a thickness of �15–
20 lm using a tripod polishing technique. In order to
achieve electron transparency, the mechanical polishing is
followed by ion milling in a Gatan precision ion polishing
system with a beam energy of 4.5 keV, gradually decreased
to 3 keV. The specimens were evaluated using a JEOL 2010
transmission electron microscope operating at 200 keV.

The GIXRD measurements were recorded on a Philips
X’Pert MPD diffractometer operating at 45 kV and
40 mA using a fixed Cu anode with an X-ray wavelength
of 1.54187 Å. A Göbel mirror for the incident beam and
a 0.27 radian parallel plate collimator for the diffracted
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beam were used in this study. The glancing incident angle
was fixed at x = 5� to avoid strong diffraction intensities
from the underlying Si substrate. Analysis of the XRD pat-
terns was conducted using the commercial software JADE
from Materials Data, Inc. and the PDF4+ database from
ICSD. The nanocrystalline sizes were all determined from
the main diffraction peaks using pseudo-Voigt profiles,
and are in good agreement with the grain sizes observed
in the TEM data.

3. Results

3.1. As-deposited film

A TEM micrograph of the as-deposited NSC film is
shown in Fig. 1a. The NSC film is approximately 330 nm

thick and has a random texture. Above the Si substrate is
a 5 nm buffer layer of SiO2, on top of which is the NSC
film. The high-resolution image (Fig. 1b) shows that the
Si substrate is highly crystalline, the SiO2 buffer layer is
amorphous and the NSC film consists of nanocrystalline
grains that are randomly orientated. The random orienta-
tion is confirmed by the selected area electron diffraction
(SAED) pattern in Fig. 1c, which is indicative of polycrys-
talline material. Also shown are the crystallographic indi-
ces for the cubic fluorite structure, indicating that the
NSC film is of the cubic phase. The GIXRD results shown
in Fig. 2 confirm that the as-deposited film is of the cubic
fluorite structure, and also reveal that the average grain size
of the film was �6 nm. The GIXRD peaks show that the
(31 1) and (222) peaks become more distinct and individu-
ally resolvable with increasing ion dose, a phenomenon

Fig. 1. TEM micrographs of the NSC film at (a) low magnification, diffraction contrast; (b) high-resolution phase contrast; and (c) SAED pattern from
the NSC film, with crystallographic indices labelled.

Fig. 2. GIXRD results of the NSC films irradiated with 3 MeV Au+ to doses of up to �34 dpa at (a) 300 K and (b) 400 K. The results show that the cubic
phase is retained regardless of the irradiation dose and temperature, whilst the narrowing of the diffraction peaks is indicative of grain growth.
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consistent with grain growth (this will be discussed further
in Section 4.2). RBS reveals that the O/Ce ratio was �2,
indicating that the film is stoichiometric.

3.2. Irradiated films

3.2.1. 300 K irradiation
SAED patterns, bright-field diffraction contrast images

and high-resolution phase contrast images for the samples

irradiated to 0.54, 3.78 and 34.3 dpa at a temperature of
300 K are shown in Fig. 3. The SAED patterns show that,
as the dose is increased up to �34 dpa, a refinement of the
patterns occurs. This refinement is observed as a discretiza-
tion of the diffraction spots. Such an observation is indica-
tive of grain coarsening. Moreover, the bright-field
diffraction contrast images indicate that the nanocrystalline
grains undergo growth, with the grains that were initially
approximately 6 nm in diameter increasing to�17 nm. This

Fig. 3. Series of SAED patterns, low-magnification, high-magnification and high-resolution TEM micrographs of the NSC films irradiated at 300 K to
various doses (indicated on the right). Grain growth is evident from the SAED pattern and the low-magnification images. High-quality grain boundaries
are also apparent. The underlying Si substrate is rendered amorphous at the lowest ion dose.

Fig. 4. Series of SAED patterns, low-magnification, high-magnification and high-resolution TEM micrographs for NSC films irradiated at 400 K to
various doses (indicated on the right). As with the 300 K results, grain growth is evident, as are high-quality grain boundaries. Unlike the 300 K
irradiation, amorphization of the substrate is somewhat retarded and grows with increasing ion dose.
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grain-coarsening effect is also evident in the GIXRD results
shown in Fig. 2 by the narrowing of the diffraction peaks.
Examination of the diffraction contrast and phase contrast
TEM images also reveal that no visible three-dimensional
voids or vacancy/interstitial clusters were formed in the
film. The high-resolution phase contrast images also reveal
that the nanocrystalline grains are of apparent high quality
and that the grain boundaries are sharp. RBS analysis of the
chemical composition in the film revealed that no loss of
oxygen from the film occurred as has been observed in sim-
ilar materials (nanocrystalline zirconia) [12,15].

3.2.2. 400 K irradiation

SAED patterns, bright-field diffraction contrast and
high-resolution phase contrast TEM images recorded for
samples irradiated to 0.49, 3.90 and 34.0 dpa at a tempera-
ture of 400 K are shown in Fig. 4. Similar to the 300 K irra-
diated sample, the SAED patterns show discretization of the
diffraction spots indicative of grain growth. The diffraction
contrast TEM images confirm grain growth, similar to the
GIXRD results in Fig. 2. The high-resolution TEM images
reveal that the nanocrystalline grains and grain boundaries
are again of high quality regardless of the irradiation dose.
Again, no three-dimensional defects were observed within
the detection limit. RBS analysis further demonstrated that
no loss of oxygen occurred.

4. Discussion

4.1. Phase and lattice stability

From the GIXRD results and the SAED patterns shown
in Figs. 2–4, it is evident that the cubic fluorite phase of the
film is maintained during the irradiation. This is inferred by
the absence of the generation or disappearance of diffraction
peaks. It can be seen in both the 300 and 400 K GIXRD
results that the (222) reflection is not clearly observed in
the as-deposited and low dpa samples. As the dpa increases
to 1.5 and above, the (222) reflection becomes visible. This is
not due to the generation of the (222) reflection but, rather,
is a result of the irradiation-induced grain coarsening caus-
ing a refinement (narrowing) of the diffraction peaks. As
the diffraction peaks become narrower, the (22 2) and
(311) reflections become more distinct and resolvable.

Several phases of ceria are known to exist, and depend
heavily on the oxygen content of the material [22]. The cubic
fluorite phase exists for CeO2�x when 0 < x < 0.5, and the
hexagonal phase forms when x P 0.5, i.e. Ce2O3. Reports
have been made about the existence of the rhombohedral
phase for CeO1.82, although subsequent studies have been
unable to confirm the existence of this phase [22]. It therefore
seems likely that only the cubic fluorite and hexagonal
phases may exist at atmospheric pressures and temperatures.

During ion irradiation, ion–solid interactions occur that
result in the permanent displacement of some atoms from
their lattice sites. With increasing ion fluence, this generally
results in the generation of saturation concentrations for

interstitials and vacancies, as observed previously for
alpha-irradiated CeO2.[11] Thus, it is expected that irradi-
ation of the thin NSC film should result in a saturation
level of defects that will be visible in the GIXRD results
due to the distortion of the lattice.

Measurements of the lattice parameter as a function of
dose and grain size, using the (11 1) reflection from the
GIXRD data, are shown in Fig. 5. It is evident that, at low
dose levels, there is a dramatic reduction in the lattice param-
eter, followed by stabilization (Fig. 5a). This suggests that
there is an initial stress relief of the film at low dose levels,
after which the lattice appears to stabilize, despite the intro-
duction of significant damage. The graph displaying the lat-
tice parameter as a function of grain size shows a similar
effect (Fig. 5b), in which an initial rapid decrease in lattice
parameter is observed, followed by stabilization. The initial
decrease is most likely associated with stress relief of the
as-deposited film rather than any grain size dependence.
However, Deshpande et al. [23] have previously shown that,
for grains of CeO2 in the size range of interest here
(7–20 nm), there is a significant variation in the lattice
parameter (�0.005 nm). This is in contradiction to the
results presented here, whereby, over a similar size range, a
shift of only �0.001 nm lattice variation is observed. Whilst
Deshpande et al. attributed this to the generation of oxygen

Fig. 5. Graphs showing the variation of lattice parameter, as measured
using GIXRD, of the NSC film during irradiation as a function of (a) ion
dose and (b) average grain size.
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vacancies within the grains [23] (introduced during the
synthesis process), the samples in that study consisted of
free-standing grains, where the surface area-to-volume
effects may not be negligible.

The slight lattice variation observed in this work is in
contrast to the increase in lattice parameter observed
previously (0.7%) in alpha-irradiated sintered CeO2 [11],
as well as to that observed during similar irradiations of
nanocrystalline zirconia thin films in which a significant
shift in the lattice parameter was measured [24], the extent
of which was found to be dependent on the irradiation tem-
perature. That observed shift in the zirconia work was
attributed to the formation and loss of oxygen interstitials,
subsequently leading to the accumulation of an excess of
oxygen vacancies during the ion irradiation, with different
charge states depending on the irradiation temperature.
The results presented here on ceria films show that the films
undergo minor lattice distortion (<0.2%), suggesting lim-
ited accumulation of defects due to effective recombination
and annihilation processes.

These observations may be explained as follows. Once
the initial relaxation phase is complete (at very low doses),
the change in lattice parameter with increasing dose is a
direct result of the competition between recombination
processes in the grains and defect loss/migration to the
grain boundaries, which are dependent on the grain size.
Based on previous results [11], the effective recombination
radius for irradiation-induced defects in sintered (large
grain) CeO2 at 300 K is estimated to be about 2.5 nm due
to high oxygen vacancy mobility. This is comparable to
the initial grain size; thus, recombination and defect loss
(primarily highly mobile oxygen vacancies and less mobile
oxygen interstitials) to the accessible grain boundaries are
expected to dominate during irradiation at 300 K to low
doses, leaving the grain interiors relatively defect free with
no lattice expansion. As the grains grow in size with
increasing dose, the defect diffusion distances to grain
boundaries for the less mobile oxygen interstitials [11]
become too large and some excess interstitials accumulate
in the grain interiors, leading to the observed lattice expan-
sion at grains sizes exceeding about 12 nm diameter. Below
this grain size, any defect produced within the grain inte-
rior is within the recombination distance of either a grain
boundary or other defects within the grain interiors. This
process also helps to retard the grain growth, as will be
discussed below. In the case of irradiation at 400 K, the
much higher mobility of the vacancies leads to more
enhanced vacancy loss to the grain boundaries and less
recombination, leaving an excess of interstitials in the grain
interiors at lower doses (smaller grain size). The concentra-
tion of excess interstitials increases with ion dose and grain
size, leading to the observed increase in lattice parameter.
Eventually, the higher interstitial concentration at 400 K
leads to clustering, which results in the observed decrease
in lattice parameter. Measurements of the (111) fringe
spacing by high-resolution TEM (HREM; Fig. 6) indicates
that there is little variation in the lattice, suggesting that the

defect accumulation is not as significant as in previous
similar experiments on zirconia [24].

4.2. Grain growth and grain boundary evolution

During irradiation of the NSC films, the grains undergo
growth, as seen in Figs. 3 and 4. The dependence of grain size
on dose is summarized in Fig. 7, where it can easily be seen
that the grains undergo a rapid growth at low dpa levels
before beginning to stabilize somewhat at higher dpa levels.
Indeed, increasing the dose further (to a value of 108 dpa)
results in additional growth of the grain size to an asymptotic
value of �25 nm [21]. Previous work has shown that grain
growth of nanocrystalline metallic systems under irradiation
[25] follows the equation Dn � Dn

0 ¼ kUt, where n = 3, D is
the grain size for a given dose, D0 is the initial grain size, K

is a constant and Ut is the ion dose. For nanocrystalline cera-
mic films, it has been shown that the exponent, n, does not
equal 3 [15,21]; nor does it equal 2 – a value assigned for ther-
mal growth of nanocrystalline metallic grains. This suggests
that there is a different grain growth mechanism occurring in
nanocrystalline ceramics (ceria and zirconia). It has been
proposed that a defect-stimulated grain growth mechanism
is the dominant process in nanocrystalline ceramics under
irradiation [15,21], with the diffusion of the defects to the
grain boundaries playing a vital role – as discussed above.
While it would normally be expected that grain growth
should not occur in ceramics at these temperatures, the
nanocrystalline morphology of the samples, coupled with
the potential for a non-equilibrium concentration of defects

Fig. 6. HREM micrograph of the NSC film irradiated to 0.54 dpa at
300 K. High-quality grain boundaries are visible, as is a single dislocation
terminating in the upper-rightmost grain. Overlaid are the lattice spacings
measured from the individual grains. The 3.1 Å and 1.9 Å measured
spacings relate to the d111 and d220 lattice planes, respectively. Arrows
indicate the presence of dislocations that terminate at grain boundaries.
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that may be present in the sample due to the synthesis
process, could result in thermally induced grain growth.
However, an as-deposited nanocrystalline ceria film was
annealed at 400 K for 5 h, during which time no grain
growth was observed, demonstrating that thermal growth
at 400 K is negligible [26]. However, it is not clear what the
driving force behind this defect-stimulated grain growth
mechanism (i.e. the defects responsible for the growth) is,
or the net gradient under which growth occurs (i.e. to what
extent the grains grow). In an attempt to elucidate this sec-
ond question, the evolution of the grain boundaries has been
studied as a function of ion dose.

Electron backscattering diffraction (EBSD) and orienta-
tion imaging microscopy (OIM) are techniques typically
used to study grain boundaries to obtain information about
the misorientation angles and coincident lattice informa-
tion. However, the nanocrystalline nature of the grains in
this study means that their grain size is below the resolution
limit of these techniques, so in this work the symmetry of
the grain boundaries is studied using HREM.

A typical HREM image of the NSC film is shown in
Fig. 6. The majority of the lattice fringes observed result
from the (111) planes (fringe spacing 3.1 Å). Occasionally,
lattice fringes from the (220) planes are observed (fringe
spacing 1.9 Å). Furthermore, the grain boundaries are not
necessarily symmetric. Here the grain boundary is defined
as being symmetric when two adjacent grains of similar ori-
entation, i.e. displaying similar lattice spacings, are symmet-
ric along the grain boundary. Examples of symmetric and
asymmetric grain boundaries are shown in Fig. 8.

The percentages of measured symmetric and asymmetric
grain boundaries as a function of ion dose are shown in
Fig. 9. Initially, approximately all of the grain boundaries
are asymmetric. As the dose increases, there is a tendency
for the grain boundaries to become symmetric prior to satu-
rating at doses of�10 dpa and above. The rate at which sat-
uration occurs is dependent on the irradiation temperature,
with the 300 K irradiation reaching saturation quicker than

the 400 K irradiation. The change in grain boundary state,
from asymmetric to symmetric, may be attributed to a reduc-
tion in the energy level of the system. In polycrystalline
ceramics, an electrical potential is formed across asymmetric
grain boundaries due to the breaking of the local atomic
structure, leading to the formation of dipoles at the bound-
ary [17]. During the ion implantation, the resultant displace-
ment damage can cause random bond breaking and energy
transfer to the electronic structure, leading to localized elec-
tronic excitations and charges at defects and interfaces,
which may rupture or change the nature of the covalent
and ionic bonds. This is of particular relevance in the ceria
system, the cation structure of which is unique in that it is
characterized by bonds bridging across the interface to
anions [17]. Thus, the displacement damage produced

Fig. 7. Graph showing the grain growth as a function of ion dose for the
films irradiated with 3 MeV Au+ at substrate temperatures of 300 and
400 K. Lines are added to guide the eye.

Fig. 8. TEM micrographs showing examples of symmetric (a) and
asymmetric (b) grain boundaries.
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during the irradiation may facilitate the atomic reordering at
the grain boundary interface, reducing the local potential.
This leads to an overall lowering of the energy level of the
system (more stable) when the grain boundaries become
more symmetric. It is therefore energetically more favour-
able for the grain boundaries to become more symmetric
during the irradiation to minimize the system energy by
reducing the electric fields across the grain boundaries.

Typically, the dominant CSL for materials having simi-
lar structures to CeO2, i.e. UO2, is the

P
9, having a symme-

try angle [16] of 38.94�; however, this has also been
determined in materials with significantly larger grain sizes.
Moreover, as mentioned above, it is not possible to use
techniques such as EBSD or OIM to determine the CSL
values in such fine-grained materials as those in this study.
Additionally, the high degree of curvature observed in these
nanoscale grains will add to further inaccuracies in the mea-
surement of the angles between grains and thus in assign-
ment of CSL values that are typically derived from planar
interfaces [27]. As such, it may only be speculated that the
dominant CSL is that of the

P
9 in this study.

Previous studies of the grain boundaries in UO2 [16,17]
have shown that Schottky defects exist at the high-misorien-
tation (asymmetric) grain boundaries, helping to stabilize
the system by reducing the energy at the grain boundary.
The lower angle grain boundaries and CSL (symmetric)
grain boundaries are stabilized by dislocations terminating
at the grain boundaries [16,17]. Some examples of disloca-
tion termination are shown in Fig. 6.

It is clear from Fig. 9 that there is a tendency for asymmet-
ric GBs to become symmetric during ion irradiation, and
that there is a temperature dependency on this transition.
The results suggest that the transition between asymmetric
and symmetric GBs must be interlinked with the transition
of Schottky defects and dislocations being the dominant
defects at the GBs. Moreover, the results suggest that the
asymmetric GBs are high-misorientation GBs, and the
symmetric GBs are dominated by low-angle CSL structures.

As has been discussed, the transition of the GBs from
asymmetric to symmetric is accompanied by the transition
from Schottky defects to dislocations being the dominant
defects at the GBs. This transition occurs at a faster rate
for the 300 K irradiation in comparison to that at 400 K.
This is attributed to the growth of dislocations during the
irradiation at 400 K. It is well known that dislocations read-
ily form in ion-irradiated ceria. In experiments on single
crystal CeO2, it was observed that at lower irradiation tem-
peratures higher densities of smaller dislocations were
formed, whereas a lower density of larger dislocations was
produced at higher temperatures [28]. This change in dislo-
cation size at different temperatures was attributed to the Ce
vacancy mobility. However, the migration energy of the Ce
vacancy has been estimated experimentally to be 2.3 eV [11]
and calculated to be 5.3 eV [19]. Based on these activation
energies and the observation [11] that the Ce vacancy is
essential immobile below 675 K, it seems improbable that
the Ce vacancy is mobile at the temperatures in either this
study or the work of Ye et al. [28]. On the other hand, the
oxygen vacancy in CeO2 has a measured and calculated
migration energy of 0.52 eV [19], and the migration energy
of the oxygen interstitial has been experimentally estimated
to be 1.8 eV [11] and calculated to be 1.13 eV [19]. Conse-
quently, the oxygen vacancy is likely to be highly mobile
at both 300 and 400 K, given its low migration energy,
whereas the oxygen interstitial will be somewhat more
mobile at 400 K compared to 300 K. Accordingly, if the
oxygen interstitial is an important defect in the growth of
dislocations, it can be expected that a lower density of larger
dislocations will form during the higher temperature irradi-
ation, and a high density of small dislocations will be pro-
duced at the lower temperature irradiation. These higher
densities of dislocations will rapid meet the GBs and effec-
tively pin the grain boundaries in the symmetric state. The
lower dislocation densities formed at higher temperatures
will result in a reduced number of dislocations encountering
a grain boundary, thus the transition between unpinned
asymmetric GBs and pinned symmetric GBs will occur over
a longer dose range window.

This has a significant impact on the methods by which
highly structurally stable thin films of nanocrystalline ceria
are formed. In this study, the material was prepared using
an ion-beam-assisted deposition technique [10] in which an
Ar+ beam is utilized during the deposition process to aid in
the reduction of free energy of the system and therefore to
reduce the probability of the film undergoing buckling or
microcracking. These results clearly indicate that, despite
the use of low-energy Ar irradiation to relieve stress, there
is still a reasonably high amount of stress within the film
post-deposition. It is possible that further reduction of
stress could be accomplished by refinement of the parame-
ters used in the ion-beam-assisted deposition technique
itself, or through the use of a post-deposition structural
modification by low-dose high-energy ion irradiation,
which may be attainable at the industrial scale through

Fig. 9. Graph showing the symmetric–asymmetric relationships between
grain boundaries during irradiation of the NSC film. It is apparent that the
grain boundaries tend to become symmetric during the irradiation via an
energy minimization mechanism. Lines are added to guide the eye.
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the use of existing technology currently employed for elec-
tronic device production.

5. Conclusions

Thin films of nanocrystalline ceria grown on top of silicon
substrates have been irradiated with 3 MeV Au+ ions at 300
and 400 K. It has been demonstrated that the phase of the
material is extremely stable during the irradiation, whereas
the lattice undergoes relaxation upon low-dose irradiation.
The phase and structural stability under high-dose irradia-
tion indicate that the nanocrystalline ceria films are
extremely irradiation tolerant. The grains are observed
to undergo a temperature-dependent, defect-stimulated
growth. Rearrangement of the symmetry of the grain bound-
aries from initially asymmetric to symmetric under irradia-
tion is attributed to a lowering of the system energy by an
atomic rearrangement at the grain boundary, leading to a
reduction in the electric potential at the grain boundaries.
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