186 research outputs found
Polarization of synchrotron emission from relativistic reconfinement shocks with ordered magnetic fields
We calculate the polarization of synchrotron radiation produced at the
relativistic reconfinement shocks, taking into account globally ordered
magnetic field components, in particular toroidal and helical fields. In these
shocks, toroidal fields produce high parallel polarization (electric vectors
parallel to the projected jet axis), while chaotic fields generate moderate
perpendicular polarization. Helical fields result in a non-axisymmetric
distribution of the total and polarized brightness. For a diverging downstream
velocity field, the Stokes parameter U does not vanish and the average
polarization is neither strictly parallel nor perpendicular. A distance at
which the downstream flow is changing from diverging to converging can be
easily identified on polarization maps as the turning point, at which
polarization vectors switch, e.g., from clockwise to counterclockwise.Comment: 10 pages, 6 figures, accepted for publication in A&
First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign
We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 1 April and 10 August 2013, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope (LAT), Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, MetsÀhovi and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a LIDAR (LIght Detection And Ranging) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) shows evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton model to five simultaneous broadband spectral energy distributions. We find that the synchrotron self-Compton model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission
A new cell primo-culture method for freshwater benthic diatom communities
A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation
from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were tested in step 3:
cell culture medium (Chu No 10 vs Freshwater âWCâ medium modified), cell culture vessel, and time of culture. The results showed that using Chu No 10 medium in an Erlenmeyer flask for cell culture was the optimal method,
producing enough biomass for ecotoxicological tests as well as minimising development of other microorganisms. After 96 h of culture, communities differed from the original communities sampled in the two rivers studied.
Species tolerant of eutrophic or saprobic conditions were favoured during culture. This method of diatom community culture affords the opportunity to assess, in vitro, the effects of different chemicals or effluents (water samples andindustrial effluents) on diatom communities, as well as on diatom cells, from a wide range of perspectives
Stationary relativistic jets
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with vzâcvzâc the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ctz=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialised code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres and elucidated the nature of radial oscillations of steady-state jets
Particle Acceleration in Pulsar Wind Nebulae: PIC modelling
We discuss the role of particle-in-cell (PIC) simulations in unveiling the
origin of the emitting particles in PWNe. After describing the basics of the
PIC technique, we summarize its implications for the quiescent and the flaring
emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be
emerging that, in addition to the standard scenario of particle acceleration
via the Fermi process at the termination shock of the pulsar wind, magnetic
reconnection in the wind, at the termination shock and in the Nebula plays a
major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae"
edited by D. Torres for Springer, based on the invited contributions to the
workshop held in Sant Cugat (Barcelona), June 14-17, 201
The COSPIX mission: focusing on the energetic and obscured Universe
Tracing the formation and evolution of all supermassive black holes,
including the obscured ones, understanding how black holes influence their
surroundings and how matter behaves under extreme conditions, are recognized as
key science objectives to be addressed by the next generation of instruments.
These are the main goals of the COSPIX proposal, made to ESA in December 2010
in the context of its call for selection of the M3 mission. In addition,
COSPIX, will also provide key measurements on the non thermal Universe,
particularly in relation to the question of the acceleration of particles, as
well as on many other fundamental questions as for example the energetic
particle content of clusters of galaxies. COSPIX is proposed as an observatory
operating from 0.3 to more than 100 keV. The payload features a single long
focal length focusing telescope offering an effective area close to ten times
larger than any scheduled focusing mission at 30 keV, an angular resolution
better than 20 arcseconds in hard X-rays, and polarimetric capabilities within
the same focal plane instrumentation. In this paper, we describe the science
objectives of the mission, its baseline design, and its performances, as
proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the
25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger & C.
van Eldik), PoS(Texas 2010)25
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
3C 273 with NuSTAR: Unveiling the Active Galactic Nucleus
We present results from a 244 ks NuSTAR observation of 3C 273 obtained during a cross-calibration campaign with the Chandra, INTEGRAL, Suzaku, Swift, and XMM-Newton observatories. We show that the spectrum, when fit with a power-law model using data from all observatories except INTEGRAL over the 1â78 keV band, leaves significant residuals in the NuSTAR data between 30 and 78 keV. The NuSTAR 3â78 keV spectrum is well described by an exponentially cutoff power law (Î = 1.646 ± 0.006, E_(cutoff) = 202_(-34)^(+51) keV) with a weak reflection component from cold, dense material. There is also evidence for a weak (EW = 23 ± 11 eV) neutral iron line. We interpret these features as arising from coronal emission plus reflection off an accretion disk or distant material. Beyond 80 keV INTEGRAL data show clear excess flux relative to an extrapolation of the active galactic nucleus model fit to NuSTAR. This high-energy power law is consistent with the presence of a beamed jet, which begins to dominate over emission from the inner accretion flow at 30â40 keV. Modeling the jet locally (in the NuSTAR + INTEGRAL band) as a power law, we find that the coronal component is fit by Î_(AGN) = 1.638 ± 0.045, E_(cutoff) = 47 ± 15 keV, and jet photon index by Î_(jet) = 1.05 ± 0.4. We also consider Fermi/LAT observations of 3C 273, and here the broadband spectrum of the jet can be described by a log-parabolic model, peaking at ~2 MeV. Finally, we investigate the spectral variability in the NuSTAR band and find an inverse correlation between flux and Î
- âŠ