25 research outputs found

    Complete mapping of the spin-wave spectrum in vortex state nano-disk

    Full text link
    We report a study on the complete spin-wave spectrum inside a vortex state nano-disk. Transformation of this spectrum is continuously monitored as the nano-disk becomes gradually magnetized by a perpendicular magnetic field and encouters a second order phase transition to the uniformly magnetized state. This reveals the bijective relationship that exists between the eigen-modes in the vortex state with the ones in the saturated state. It is found that the gyrotropic mode can be continuously viewed as a uniform phase precession, which uniquely softens (its frequency vanishes) at the saturation field to transform above into the Kittel mode. By contrast the other spin-wave modes remain finite as a function of the applied field while their character is altered by level anti-crossing

    Comparative Measurements of Inverse Spin Hall and Magnetoresistance in YIG|Pt and YIG|Ta

    Get PDF
    We report on a comparative study of spin Hall related effects and magnetoresistance in YIG|Pt and YIG|Ta bilayers. These combined measurements allow to estimate the characteristic transport parameters of both Pt and Ta layers juxtaposed to YIG: the spin mixing conductance GG_{\uparrow \downarrow} at the YIG|normal metal interface, the spin Hall angle ΘSH\Theta_{SH}, and the spin diffusion length λsd\lambda_{sd} in the normal metal. The inverse spin Hall voltages generated in Pt and Ta by the pure spin current pumped from YIG excited at resonance confirm the opposite signs of spin Hall angles in these two materials. Moreover, from the dependence of the inverse spin Hall voltage on the Ta thickness, we extract the spin diffusion length in Ta, found to be λsdTa=1.8±0.7\lambda_{sd}^\text{Ta}=1.8\pm0.7 nm. Both the YIG|Pt and YIG|Ta systems display a similar variation of resistance upon magnetic field orientation, which can be explained in the recently developed framework of spin Hall magnetoresistance.Comment: 8 pages, 5 figures, 1 tabl

    Detection of the microwave spin pumping using the inverse spin Hall effect

    Get PDF
    We report electrical detection of the dynamical part of the spin pumping current emitted during ferromagnetic resonance (FMR) using the inverse Spin Hall Effect (ISHE). The experiment is performed on a YIG|Pt bilayer. The choice of YIG, a magnetic insulator, ensures that no charge current flows between the two layers and only pure spin current produced by the magnetization dynamics are transferred into the adjacent strong spin-orbit Pt layer via spin pumping. To avoid measuring the parasitic eddy currents induced at the frequency of the microwave source, a resonance at half the frequency is induced using parametric excitation in the parallel geometry. Triggering this nonlinear effect allows to directly detect on a spectrum analyzer the microwave component of the ISHE voltage. Signals as large as 30 μ\muV are measured for precession angles of a couple of degrees. This direct detection provides a novel efficient means to study magnetization dynamics on a very wide frequency range with great sensitivity

    Mechanical magnetometry of Cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers

    Get PDF
    Using focused-electron-beam-induced deposition, Cobalt magnetic nanospheres with diameter ranging between 100 nm and 300 nm are grown at the tip of ultra-soft cantilevers. By monitoring the mechanical resonance frequency of the cantilever as a function of the applied magnetic field, the hysteresis curve of these individual nanospheres are measured. This enables to evaluate their saturation magnetization, found to be around 430 emu/cm^3 independently of the size of the particle, and to infer that the magnetic vortex state is the equilibrium configuration of these nanospheres at remanence

    Improved spectral stability in spin transfer nano-oscillators: single vortex versus coupled vortices dynamics

    Get PDF
    We perform a comparative study of spin transfer induced excitation of the gyrotropic motion of a vortex core with either uniform or vortex spin polarizers. The microwave output voltage associated with the vortex dynamics, detected in both cases, displays a strong reduction of phase fluctuations in the case of the vortex polarizer, with a decrease of the peak linewidth by one order of magnitude down to 200kHz at zero field. A thorough study of rf emission features for the different accessible vortex configurations shows that this improvement is related to the excitation of coupled vortex dynamics by spin transfer torques

    Generation of coherent spin-wave modes in Yttrium Iron Garnet microdiscs by spin-orbit torque

    Get PDF
    Spin-orbit effects [1-4] have the potential of radically changing the field of spintronics by allowing transfer of spin angular momentum to a whole new class of materials. In a seminal letter to Nature [5], Kajiwara et al. showed that by depositing Platinum (Pt, a normal metal) on top of a 1.3 μ\mum thick Yttrium Iron Garnet (YIG, a magnetic insulator), one could effectively transfer spin angular momentum through the interface between these two different materials. The outstanding feature was the detection of auto-oscillation of the YIG when enough dc current was passed in the Pt. This finding has created a great excitement in the community for two reasons: first, one could control electronically the damping of insulators, which can offer improved properties compared to metals, and here YIG has the lowest damping known in nature; second, the damping compensation could be achieved on very large objects, a particularly relevant point for the field of magnonics [6,7] whose aim is to use spin-waves as carriers of information. However, the degree of coherence of the observed auto-oscillations has not been addressed in ref. [5]. In this work, we emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. This requires to reduce both the thickness and lateral size in order to reach full damping compensation [8] , and we show clear evidence of coherent spin-orbit torque induced auto-oscillation in micron-sized YIG discs of thickness 20 nm

    Coherent long-range transfer of angular momentum between magnon Kittel modes by phonons

    Full text link
    We report ferromagnetic resonance in the normal configuration of an electrically insulating magnetic bilayer consisting of two yttrium iron garnet (YIG) films epitaxially grown on both sides of a 0.5-mm-thick nonmagnetic gadolinium gallium garnet (GGG) slab. An interference pattern is observed and it is explained as the strong coupling of the magnetization dynamics of the two YIG layers either in phase or out of phase by the standing transverse sound waves, which are excited through a magnetoelastic interaction. This coherent mediation of angular momentum by circularly polarized phonons through a nonmagnetic material over macroscopic distances can be useful for future information technologies

    Conduction of spin currents through insulating antiferromagnetic oxides

    Get PDF
    Damping processes, associated to magnetization dynamics, allow to generate spin currents from precessing ferromagnets. These can be transmitted into adjacent conducting layers through an interface exchange interaction with conduction electrons. It is in principle also possible to inject angular momentum into insulators but the relevant physical mechanisms are not yet identified. In order to test some ideas concerning pure spin transport through insulating oxides, the present paper reports on the behaviour of two materials with very different properties: NiO is an antiferromagnet whereas SiO2 is a non-magnetic light element insulator. While a sizeable flow of angular momentum is found to be able to propagate through nickel oxide, a SiO2 layer as thin as 2 nm completely blocks this transfer. This underlines some essential features required to conduct a spin current, including the presence of either magnetic order through which magnons can propagate, or compounds with large spin-orbit interactions where phonons can carry angular momentum
    corecore