235 research outputs found

    Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus

    Get PDF
    Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4ร—104 PFU, 1ร—105 PFU, or 1ร—106 PFU resulted in lethality for 70% of the animals, whereas a dose of 4ร—105 PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses

    Toxicity and pathophysiology of palytoxin congeners after intraperitoneal and aerosol administration in rats

    Get PDF
    Author Posting. ยฉ The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Toxicon 150 (2018): 235-250, doi:10.1016/j.toxicon.2018.06.067.Preparations of palytoxin (PLTX, derived from Japanese Palythoa tuberculosa) and the congeners 42-OH-PLTX (from Hawaiian P. toxica) and ovatoxin-a (isolated from a Japanese strain of Ostreopsis ovata), as well as a 50:50 mixture of PLTX and 42-OH-PLTX derived from Hawaiian P. tuberculosa were characterized as to their concentration, composition, in-vitro potency and interaction with an anti-PLTX monoclonal antibody (mAb), after which they were evaluated for lethality and pathophysiological effects by intraperitoneal (IP) and aerosol administration to rats. Once each preparation was characterized as to its toxin composition by LC-HRMS and normalized to a total PLTX/OVTX concentration using HPLC-UV, all four preparations showed similar potency towards mouse erythrocytes in the erythrocyte hemolysis assay and interactions with the anti-PLTX mAb. The IP LD50 values derived from these experiments (1-3 ฮผg/kg for all) were consistent with published values, although some differences from the published literature were seen. The aerosol LD50 values (.03-.06 ฮผg/kg) confirmed the exquisite potency of PLTX suggested by the literature. The pathophysiological effects of the different toxin preparations by IP and aerosol administration were similar, albeit with some differences. Most commonly affected tissues were the lungs, liver, heart, kidneys, salivary glands, and adrenal glands. Despite some differences, these results suggest commonalities in potency and mechanism of action among these PLTX congeners.This work was supported by the Defense Threat Reduction Agency, through the Joint Program Executive Office for Chemical and Biological Defense, Contract number CB10396. Additional support to DMA and DLK was provided by National Science Foundation (Grant OCE-1314642) and National Institutes of Health (NIEHS-1P50-ES021923-01) through the Woods Hole Center for Oceans and Human Health

    Retrospective Analysis of Monkeypox Infection

    Get PDF
    Tests have been developed and optimized for serologic differentiation between monkeypox- and vaccinia-induced immunity

    Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    Get PDF
    Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92โ€“95% (166โ€“192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome

    Rapid and High-Throughput pan-Orthopoxvirus Detection and Identification using PCR and Mass Spectrometry

    Get PDF
    The genus Orthopoxvirus contains several species of related viruses, including the causative agent of smallpox (Variola virus). In addition to smallpox, several other members of the genus are capable of causing human infection, including monkeypox, cowpox, and other zoonotic rodent-borne poxviruses. Therefore, a single assay that can accurately identify all orthopoxviruses could provide a valuable tool for rapid broad orthopovirus identification. We have developed a pan-Orthopoxvirus assay for identification of all members of the genus based on four PCR reactions targeting Orthopoxvirus DNA and RNA helicase and polymerase genes. The amplicons are detected using electrospray ionization-mass spectrometry (PCR/ESI-MS) on the Ibis T5000 system. We demonstrate that the assay can detect and identify a diverse collection of orthopoxviruses, provide sub-species information and characterize viruses from the blood of rabbitpox infected rabbits. The assay is sensitive at the stochastic limit of PCR and detected virus in blood containing approximately six plaque-forming units per milliliter from a rabbitpox virus-infected rabbit

    Gliosarcoma: a study of four cases

    Get PDF
    Gliosarcomas (GS) are highly malignant and rare tumors of the central nervous system with a poor prognosis. We report here on four patients with GS, the median survival for whom was 9.25 months. Prognosis of GS remains poor, and a multidisciplinary approach (surgery, radiation therapy, and chemotherapy) seems to be associated with slightly more prolonged survival times

    Quorum Sensing Inhibition Selects for Virulence and Cooperation in Pseudomonas aeruginosa

    Get PDF
    With the rising development of bacterial resistance the search for new medical treatments beyond conventional antimicrobials has become a key aim of public health research. Possible innovative strategies include the inhibition of bacterial virulence. However, consideration must be given to the evolutionary and environmental consequences of such new interventions. Virulence and cooperative social behaviour of the bacterium Pseudomonas aeruginosa rely on the quorum-sensing (QS) controlled production of extracellular products (public goods). Hence QS is an attractive target for anti-virulence interventions. During colonization, non-cooperating (and hence less virulent) P. aeruginosa QS-mutants, benefiting from public goods provided by wild type isolates, naturally increase in frequency providing a relative protection from invasive infection. We hypothesized that inhibition of QS-mediated gene expression removes this growth advantage and selection of less virulent QS-mutants, and maintains the predominance of more virulent QS-wild type bacteria. We addressed this possibility in a placebo-controlled trial investigating the anti-QS properties of azithromycin, a macrolide antibiotic devoid of bactericidal activity on P. aeruginosa, but interfering with QS, in intubated patients colonized by P. aeruginosa. In the absence of azithromycin, non-cooperating (and hence less virulent) lasR (QS)-mutants increased in frequency over time. Azithromycin significantly reduced QS-gene expression measured directly in tracheal aspirates. Concomitantly the advantage of lasR-mutants was lost and virulent wild-type isolates predominated during azithromycin treatment. We confirmed these results in vitro with fitness and invasion experiments. Azithromycin reduced growth rate of the wild-type, but not of the lasR-mutant. Furthermore, the lasR-mutant efficiently invaded wild-type populations in the absence, but not in the presence of azithromycin. These in vivo and in vitro results demonstrate that anti-virulence interventions based on QS-blockade diminish natural selection towards reduced virulence and therefore may increase the prevalence of more virulent genotypes in the Hospital environment. More generally, the impact of intervention on the evolution of virulence of pathogenic bacteria should be assessed

    Two Component Systems: Physiological Effect of a Third Component

    Get PDF
    Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call โ€œthird componentโ€) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible

    Comparison of the Safety and Pharmacokinetics of ST-246ยฎ after IV Infusion or Oral Administration in Mice, Rabbits and Monkeys

    Get PDF
    ST-246ยฎ is an antiviral, orally bioavailable small molecule in clinical development for treatment of orthopoxvirus infections. An intravenous (IV) formulation may be required for some hospitalized patients who are unable to take oral medication. An IV formulation has been evaluated in three species previously used in evaluation of both efficacy and toxicology of the oral formulation. plasma concentrations. These effects were eliminated using slower IV infusions. associated toxicity. Shorter infusions at higher doses in NHP resulted in decreased clearance, suggesting saturated distribution or elimination. Elimination half-lives in all species were similar between oral and IV administration. The administration of ST-246 was well tolerated as a slow IV infusion
    • โ€ฆ
    corecore