16 research outputs found

    Is the poly (L- lactide- co- caprolactone) nanofibrous membrane suitable for urinary bladder regeneration?

    No full text
    The purpose of this study was to compare: a new five-layered poly (L-lactide-co-caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L-lactide-co-caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3×10(6) cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3×10(6)ADSCs; (II) SIS+ 3×10(6)ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Masson's trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L-lactide-co-caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold

    Vývoj nanostrukturovaných kožních náplastí směrem k multifunkčním nositelným platformám pro biomedicínské aplikace

    No full text
    Nedávné pokroky v oblasti kožních náplastí podpořily vývoj nositelné a implantovatelné bioelektroniky pro dlouhodobé, nepřetržité řízení zdravotní péče a cílenou terapii. Návrh elektronických náplastí na kůži (e-skin) s roztažitelnými součástmi je však stále náročný a vyžaduje důkladné pochopení vrstvy substrátu připojitelného ke kůži, funkčních biomateriálů a pokročilé elektroniky s vlastním napájením. V tomto obsáhlém přehledu představujeme vývoj kožních náplastí od funkčních nanostrukturních materiálů přes multifunkční a stimulačně reagující náplasti k flexibilním substrátům a novým biomateriálům pro e-kožní náplasti, včetně výběru materiálu, návrhu struktury a slibných aplikací. Diskutovány jsou rovněž natahovací senzory a samonapájecí náplasti na kůži, od elektrické stimulace pro klinické postupy až po nepřetržité monitorování zdraví a integrované systémy pro komplexní řízení zdravotní péče. Integrovaný energetický harvester s bioelektronikou navíc umožňuje výrobu samonapájecích elektronických kožních náplastí, které mohou účinně řešit zásobování energií a překonat nevýhody vyvolané objemnými zařízeními poháněnými bateriemi. Aby však bylo možné plně využít potenciál, který tyto pokroky nabízejí, je třeba vyřešit několik problémů, které se týkají elektronické kožní náplasti příští generace. Na závěr jsou uvedeny budoucí příležitosti a pozitivní výhledy na budoucí směřování bioelektroniky. Předpokládá se, že inovativní návrh materiálů, konstrukční inženýrství a důkladné studium základních principů mohou podpořit rychlý vývoj elektronických kožních náplastí a nakonec umožnit, aby lidstvu prospěly bioelektronické systémy s vlastním napájením v uzavřeném okruhu.Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind

    Engineering surgical face masks_[photothermal properties]

    No full text
    <p>Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication: photothermal properties</p&gt

    Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication

    No full text
    <p>The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks. </p&gt

    Analysis of poly (lactydo-<i>co</i>-caprolactone) (PLC) and small intestinal submucosa (SIS) cytotoxicity using Real Time Cell Analyzer (RTCA).

    No full text
    <p>Adipose derived stem cells were treated with 75%, 50% and 25% extracts of PLC (PLC75, PLC50, PLC25 respectively) and SIS (SIS75, SIS50, SIS25 respectively). The results are presented as: cell growth curves (A), mean cell index ± standard deviation after 96 hours of cell incubation with extracts. The statistical significance is shown as * p<0.05 (B)</p
    corecore