110 research outputs found

    Heating Experiments of the Tagish Lake Meteorite: Investigation of the Effects of Short-Term Heating on Chondritic Organics

    Get PDF
    We present in this study the effects of short-term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmo thermometers. The kinetics of short-term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites - potential analogues of the target asteroid Ryugu of the Hayabusa2 mission - which had experienced post-hydration, short-duration local heating. In an attempt to understand the effects of short-term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X-ray microscopy utilizing X-ray absorption near edge structure spectroscopy, and ultra-performance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 degrees Centigrade for 96 hours, as the OM maturity trend was influenced by the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s-sigma * exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long-term internal heating

    A D- and N-15-Rich Micrometer-Sized Aggregate of Organic Matter in a Xenolithic Clast from the Zag Ordinary Chondrite

    Get PDF
    The nature and origin of extraterrestrial organic matter are still under debate despite the significant progress in the analyses and experimental approaches in this field over the last five decades. Xenolithic clasts are often found in a wide variety of meteorite groups, some of which contain exotic organic matter (OM). The Zag meteorite is a thermally-metamorphosed H ordinary chondrite. It contains a primitive xenolithic clast that has been proposed to have originated from Ceres, which was accreted to the Zag host asteroid after metamorphism. The cm-sized clast contains abundant large carbon-rich (mostly organic) grains or aggregates up to 20 microns. Such large OM grains are unique among astromaterials with respect to the size. Here we report organic and isotope analyses of a large (approx.10 microns) aggregate of solid OM in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM has sp2 bonded carbon with no other functional groups nor graphitic feature (1s-sigma exciton), and thus it is distinguished from most of the OM in carbonaceous meteorites. The apparent absence of functional groups in the OM suggests that it is composed of hydrocarbon networks with less heteroatoms, and therefore the OM aggregate is similar to hydrogenated amorphous carbon (HAC). The OM aggregate has high D/H and 15N/14N ratios, suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus the high D/H ratio must have survived the extensive late-stage aqueous processing. It is not in the case for OM in carbonaceous chondrites of which the D/H ratio was reduced by the alteration via the D-H exchange of water. It indicates that both the OM precursors and the water had high D/H ratios, similar to the water in Enceladus. Our results support the idea that the clast originated from Ceres, or at least, a hydrovolcanically active body similar to Ceres, and further imply that Ceres originally formed in the outer Solar System and migrated to the main belt asteroid region as suggested by the "Grand tack" scenario

    The Shock State of Itokawa Sample

    Get PDF
    One of the fundamental aspects of any astromaterial is its shock history, since this factor elucidates critical historical events, and also because shock metamorphism can alter primary mineralogical and petrographic features, and reset chronologies [1]. Failure to take shock history into proper account during characterization can result in seriously incorrect conclusions being drawn. Thus the Hayabusa Preliminary Examination Team (HASPET) made shock stage determination of the Itokawa samples a primary goal [2]. However, we faced several difficulties in this particular research. The shock state of ordinary chondrite materials is generally determined by simple optical petrographic observation of standard thin sections. The Itokawa samples available to the analysis team were mounted into plastic blocks, were polished on only one side, and were of non-standard and greatly varying thickness, all of which significantly complicated petrographic analysis but did not prevent it. We made an additional estimation of the sample shock state by a new technique for this analysis - electron back-scattered diffraction (EBSD) in addition to standard petrographic techniques. We are also investigating the crystallinity of Itokawa olivine by Synchrotron X-ray diffraction (SXRD)

    The noble gas and nitrogen relationship between Ryugu and carbonaceous chondrites

    Get PDF
    Carbonaceous chondrites are considered to have originated from C-type asteroids and represent some of the most primitive material in our solar system. Furthermore, since carbonaceous chondrites can contain significant quantities of volatile elements, they may have played a crucial role in supplying volatiles and organic material to Earth and other inner solar system bodies. However, a major challenge of unravelling the volatile composition of chondritic meteorites is distinguishing between which features were inherited from the parent body, and what may be a secondary feature attributable to terrestrial weathering. In December 2020, the Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) successfully returned surface material from the C-type asteroid (162173) Ryugu to Earth. This material has now been classified as closely resembling CI-type chondrites, which are the most chemically pristine meteorites. The analysis of material from the surface of Ryugu therefore provides a unique opportunity to analyse the volatile composition of material that originated from a CI-type asteroid without the complications arising from terrestrial contamination. Given their highly volatile nature, the noble gas and nitrogen inventories of chondrites are highly sensitive to different alteration processes on the asteroid parent body, and to terrestrial contamination. Here, we investigate the nitrogen and noble gas signature of two pelletized grains collected from the first and second touchdown sites (Okazaki et al., 2022a), to provide an insight into the formation and alteration history of Ryugu. The concentration of trapped noble gas in the Ryugu samples is greater than the average composition of previously measured CI chondrites and are primarily derived from phase Q, although a significant contribution of presolar nanodiamond Xe-HL is noted. The large noble gas concentrations coupled with a significant contribution of presolar nanodiamonds suggests that the Ryugu samples may represent some of the most primitive unprocessed material from the early solar system. In contrast to the noble gases, the abundance of nitrogen and ÎŽ15N composition of the two Ryugu pellets are lower than the average CI chondrite value. We attribute the lower nitrogen abundances and ÎŽ15N measured in this study to the preferential loss of a 15N-rich phase from our samples during aqueous alteration on the parent planetesimal. The analyses of other grains returned from Ryugu have shown large variations in nitrogen concentrations and ÎŽ15N indicating that alteration fluids heterogeneously interacted with material now present on the surface of Ryugu. Finally, the ratio of trapped noble gases to nitrogen is higher than CI chondrites, and is closer to refractory phase Q and nanodiamonds. This indicates that Ryugu experienced aqueous alteration that led to the significant and variable loss of nitrogen, likely from soluble organic matter, without modification of the noble gas budget, which is primarily hosted in insoluble organic matter and presolar diamonds and is therefore more resistant to aqueous alteration.ISSN:0016-7037ISSN:1872-953

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher ÎŽ18O, Δ17O, and Δ54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore