329 research outputs found

    Improvement of the Training Paddle for a Swimmer with Unilateral Transradial Deficiency

    Get PDF

    A SIMULATION OF STROKE EFFICIENCY DURING FRONT CRAWL BY USING THE SWIMMING HUMAN SIMULATION MODEL

    Get PDF
    Nakashima et al. (2005) have developed a swimming human simulation model (SWUM) considering rigid body dynamics and unsteady fluid for the whole body. By using this model, it comes to be able to estimate the mechanical efficiency during human swimming which has been difficult to obtain its actual measurement value. The purpose of this study was to estimate the mechanical efficiency during front crawl in varied swimming velocity. If this estimation is considered reasonable and proper, the SWUM may become a useful tool to create a new efficient stroke movement in the water

    A New Method for Designing Sportswear by Using Three Dimensional Computer Graphic Based Anisotropic Hyperelastic Models and Musculoskeletal Simulations

    Get PDF
    AbstractThe purpose of this study is to develop a new method for designing compression sportswear from the viewpoint of force by simulation. Applied simulation techniques are 1) skin strain simulation, 2) fabric strain simulation using the anisotropic hyperelastic model, and 3) musculoskeletal simulation. For skin strain simulations, a three dimensional computer graphic (3D-CG) polygon strain was calculated as a skin strain using a 3D-CG model that simulates the human body (CG-Human-Model). The initial strain and the strain caused by physical exercise were given to the polygon model representing the shape of the sportswear (CG-Sportswear-Model). For compression sportswear, the strain of the fabric is approximately the same as skin strain, thus the strain of the CG-Human-Model was given to the CG-Sportswear-Model. In-plane and out-of-plane forces resulting from the CG-Sportswear-Model are calculated using anisotropic hyperelastic models. These forces were given to the musculoskeletal simulation as the external forces, and muscle activity required for any given physical exercise (e.g. swimming motion) was calculated. Information of forces and muscle activity are very useful in designing compression sportswear. It is believed that this new method for designing compression sportswear based on simulation is a sophisticated technique because this method takes into account not only forces resulting from sportswear but also the effect of these forces on physical exercise

    Developing a methodology for estimating the drag in front-crawl swimming at various velocities

    Get PDF
    We aimed to develop a new method for evaluating the drag in front-crawl swimming at various velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new method, which estimates the drag in swimming using measured values of residual thrust (MRT). Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging from 1.0 to 1.4 m s−1; Dp was measured at flow velocities ranging from 0.9 to 1.5 m s−1 at intervals of 0.1 m s−1. The variability in the values of Da at MRT was also investigated for two swimmers. According to the results, Da (Da = 32.3 v3.3, N = 30, R2 = 0.90) was larger than Dp (Dp = 23.5 v2.0, N = 42, R2 = 0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT can be used to evaluate Da at various velocities and is special in that it can be applied to various swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a role in establishing the fundamental data for swimming

    Effect of leg kick on active drag in front-crawl swimming: Comparison of whole stroke and arms-only stroke during front-crawl and the streamlined position

    Get PDF
    The purpose of this study was to examine the effect of leg kick on the resistance force in front-crawl swimming. The active drag in front-crawl swimming with and without leg motion was evaluated using measured values of residual thrust (MRT method) and compared with the passive drag of the streamlined position (SP) for the same swimmers. Seven male competitive swimmers participated in this study, and the testing was conducted in a swimming flume. Each swimmer performed front-crawl under two conditions: using arms and legs (whole stroke: WS) and using arms only (arms-only stroke: AS). Active drag and passive drag were measured at swimming velocities of 1.1 and 1.3 m s−1 using load cells connected to the swimmer via wires. We calculated a drag coefficient to compare the resistances of the WS, AS and SP at each velocity. For both the WS and AS at both swimming velocities, active drag coefficient was found to be about 1.6–1.9 times larger than that in passive conditions. In contrast, although leg movement did not cause a difference in drag coefficient for front-crawl swimming, there was a large effect size (d = 1.43) at 1.3 m s−1. Therefore, although upper and lower limb movements increase resistance compared to the passive condition, the effect of leg kick on drag may depend on swimming velocity

    Numerical and experimental investigations of human swimming motions

    Get PDF
    This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer’s potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m2 area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency

    Phenotypic landscape of systemic lupus erythematosus: An analysis of the Kyoto Lupus Cohort

    Get PDF
    Objectives: The present study aimed to clarify comprehensive relationships among the clinical variables of systemic lupus erythematosus (SLE). Methods: We retrospectively surveyed 32 clinical variables in 581 patients and conducted comprehensive association studies among SLE clinical phenotypes. A univariate analysis of all possible combinations was performed, and the results of phenotypic correlations were reduced into two dimensions. We also created a regression formula using L1 regularisation (LASSO) to calculate the probability of exhibiting each phenotype. Results: The univariate analysis identified 26 correlations, including multiple phenotypes with low complement. Some unpredicted correlations were identified, including fever and the anti-Sm antibody (odds ratio; OR = 2.3, p = 1.6 × 10⁻⁵) or thrombocytopenia and psychosis (OR = 3.7, p = 3.2 × 10⁻⁵). The multivariate analysis accurately estimated the probability of exhibiting each phenotype (area under the curve > 0.7) in 10 out of 20 phenotypes. Conclusions: The present results show the phenotypic architecture of SLE and represent a model for estimating the probability of exhibiting each phenotype. They also offer insights into the pathology of SLE and estimating the probability of the onset of new phenotypes in clinical practice

    Oral dextran sulfate sodium administration induces peripheral spondyloarthritis features in SKG mice accompanied by intestinal bacterial translocation and systemic Th1 and Th17 cell activation

    Get PDF
    BACKGROUND: Spondyloarthritis (SpA) is an autoimmune and autoinflammatory musculoskeletal disease characterised by systemic enthesitis. Recent research has focused on subclinical inflammatory bowel disease (IBD) in SpA pathogenesis. SKG mice, harbouring the Zap70 W163C mutation, increase autoreactive Th17 cells intrinsically, and in a conventional environment, they exhibit spontaneous arthritis with fungal factors. Under SPF conditions, they show SpA features, including enteritis, after peritoneal injection of β-1, 3-glucan. This study aimed to clarify whether oral dextran sulfate sodium (DSS) administration, utilised in IBD model mice, can provoke SpA features in SKG mice under SPF conditions, focusing on the relationship between gut microorganisms and SpA pathogenesis. METHODS: BALB/c and SKG mice were administered oral DSS, and their body weights, arthritis, and enthesitis scores were recorded. In another cohort, antibiotics (meropenem and vancomycin) or an anti-fungal agent (amphotericin B) was administered orally before DSS administration. The splenic Th1 and Th17 cell populations were examined before and after DSS administration using flow cytometry. Furthermore, the amount of circulating bacterial DNA in whole blood was measured by absolute quantitative polymerase chain reaction (qPCR), and the number and characteristics of bacterial species corresponding to these circulating DNA were analysed by next-generation sequencing (NGS). RESULTS: Ankle enthesitis as a peripheral SpA feature was elicited in half of DSS-administered SKG mice, and none of the BALB/c mice. Pre-administration of antibiotics suppressed enthesitis, whilst an anti-fungal agent could not. Th1 and Th17 cell levels in the spleen increased after DSS administration, and this was suppressed by pre-administration of antibiotics. SKG mice have a larger amount of bacterial DNA in whole blood than BALB/c mice before and 1 day after the initiation of DSS administration. The number of bacterial species in whole blood increased after DSS administration in BALB/c and SKG mice. Some genera and species significantly specific to the DSS-treated SKG mouse group were also detected. CONCLUSION: Oral DSS administration alone elicited peripheral enthesitis in SKG mice with bacterial translocation accompanied by increased splenic Th1 and Th17 cell levels. Pre-administration of antibiotics ameliorated these DSS-induced SpA features. These findings suggest that intestinal bacterial leakage plays a pivotal role in SpA pathogenesis

    Three Groups in the 28 Joints for Rheumatoid Arthritis Synovitis - Analysis Using More than 17,000 Assessments in the KURAMA Database.

    Get PDF
    Rheumatoid arthritis (RA) is a joint-destructive autoimmune disease. Three composite indices evaluating the same 28 joints are commonly used for the evaluation of RA activity. However, the relationship between, and the frequency of, the joint involvements are still not fully understood. Here, we obtained and analyzed 17,311 assessments for 28 joints in 1,314 patients with RA from 2005 to 2011 from electronic clinical chart templates stored in the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Affected rates for swelling and tenderness were assessed for each of the 28 joints and compared between two different sets of RA patients. Correlations of joint symptoms were analyzed for swellings and tenderness using kappa coefficient and eigen vectors by principal component analysis. As a result, we found that joint affected rates greatly varied from joint to joint both for tenderness and swelling for the two sets. Right wrist joint is the most affected joint of the 28 joints. Tenderness and swellings are well correlated in the same joints except for the shoulder joints. Patients with RA tended to demonstrate right-dominant joint involvement and joint destruction. We also found that RA synovitis could be classified into three categories of joints in the correlation analyses: large joints with wrist joints, PIP joints, and MCP joints. Clustering analysis based on distribution of synovitis revealed that patients with RA could be classified into six subgroups. We confirmed the symmetric joint involvement in RA. Our results suggested that RA synovitis can be classified into subgroups and that several different mechanisms may underlie the pathophysiology in RA synovitis

    Intake frequency of vegetables or seafoods negatively correlates with disease activity of rheumatoid arthritis

    Get PDF
    Objective: To clarify the relationship between dietary habit and disease activity of rheumatoid arthritis (RA). Methods: This study enrolled RA patients who met the ACR/EULAR 2010 classification criteria from Kyoto University Rheumatoid Arthritis Management Alliance (KURAMA) cohort in 2015. 22-item food frequency questionnaire (FFQ) was taken for the measurement of dietary habit in a single-institution cohort of RA (Kyoto University Rheumatoid Arthritis Management Alliance: KURAMA) in 2015. The disease activities of RA using the Disease Activity Score calculated based on the erythrocyte sedimentation rate (DAS28-ESR), Simplified Disease Activity Index (SDAI), Health Assessment Questionnaire (HAQ), and serum matrix metalloproteinase-3 (MMP-3) level, the use of disease-modifying anti-rheumatic drugs (DMARDs), disease duration, rheumatoid factor, anti-cyclic citrullinated antibody, and body mass index were also examined. All of them were combined and statistically analyzed. Results: 441 RA patients (81% women; mean age 65 years; mean disease duration 15 years) were enrolled from the KURAMA cohort. Average Disease Activity Score-28 using the erythrocyte sedimentation rate (DAS28-ESR) was 2.7. Univariate analysis showed that intake frequency of vegetables had a statistically significant negative correlation with disease activity markers, such as DAS28-ESR (ρ = −0.11, p<0.01), Simplified Disease Activity Index (SDAI) (ρ = −0.16, p<0.001), matrix metalloproteinase-3 (MMP-3) (ρ = −0.21, p<0.0001), and Health Assessment Questionnaire (HAQ) (ρ = −0.13, p<0.01). Factor analysis with varimax rotation was done to simplify the relevance of disease activity to various food items. 22 foods were categorized into five dietary patterns: “seafoods”, “vegetables/fruits”, “meats/fried foods”, “snacks”, and “processed foods”. The multivariate analysis adjusted for clinically significant confounders showed that “seafoods” had statistically significant negative correlations with DAS28-ESR (β = −0.15, p<0.01), SDAI (β = −0.18, p<0.001), MMP-3 (β = −0.15, p<0.01), and HAQ (β = −0.24, p<0.0001). “Vegetables/fruits” had statistically significant negative correlations with SDAI (β = −0.11 p<0.05), MMP-3 (β = −0.12, p<0.01), and HAQ (β = −0.11, p<0.05) Conclusions: These results suggest that high intake frequency of vegetables/fruits and/or seafoods might correlate with low disease activity
    corecore