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Abstract 

We aimed to develop a new method for evaluating the drag in front-crawl swimming at various 

velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new 

method, which estimates the drag in swimming using measured values of residual thrust (MRT). 

Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive 

drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging 

from 1.0 to 1.4 m s−1; Dp was measured at flow velocities ranging from 0.9 to 1.5 m s−1 at intervals 

of 0.1 m s−1. The variability in the values of Da at MRT was also investigated for two swimmers. 

According to the results, Da (Da = 32.2 v3.3, N = 30, R2 = 0.90) was larger than Dp (Dp = 23.5 

v2.0, N = 42, R2 = 0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT 

can be used to evaluate Da at various velocities and is special in that it can be applied to various 

swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a 

role in establishing the fundamental data for swimming. 
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1．Introduction 

Drag has a major influence on swimming performance because swimming is performed in water, 

which has a greater density than air. Therefore, the evaluation of drag is one of the most important 

issues in swimming research. However, it is extremely difficult to evaluate the actual drag during 

swimming (active drag) because the swimmer is continuously moving. To accurately measure the 

active drag, it is necessary to measure the entire pressure and friction distribution of the swimmer 

without disturbing their natural swimming movement. Hence, only a few methods have been 

developed to evaluate the active drag, each with several restrictions. In the measurement of active 

drag (MAD) approach (Hollander et al., 1986; Toussaint et al., 1988; Toussaint, Roos, & 

Kolmogorov, 2004; Van der Vaart et al., 1987), only the front-crawl swimming stroke can be 

assessed owing to the apparatus structure. Furthermore, the method is limited to the use of arms 

only. This means that swimmers cannot use lower limb actions to maintain streamlined alignments, 

which they would use during normal swimming.  

The velocity perturbation method (Kolmogorov & Duplishcheva, 1992; Toussaint et al., 

2004) and the assisted towing method (Formosa, Toussaint, Mason, & Burkett, 2012) require that 

the swimmers swim with maximal effort. Hence, this method is not suitable for evaluating the active 

drag at various velocities, i.e., sub-maximal effort. The “energetic approach” proposed by Di 

Prampero, Pendergast, Wilson, and Rennie (1974) includes the motion of legs but extrapolates the 

data for active drag by adding (or subtracting) external loads to (or from) a swimmer and measuring 

the associated energy expenditure. Therefore, the development of a new methodology for estimating 

the drag in swimming, which can enable upper and lower limb motion (full stroke) at various 

velocities during front-crawl swimming, would provide swimmers and coaches with beneficial 

information on improving their swimming performances. 

Accordingly, the purpose of this research is to develop a new methodology for evaluating 

the drag in front-crawl swimming at various velocities and at full stroke. We will introduce the basic 

principle and apparatus of the new method. We will also apply it to determine the active drag and 

compared it with the passive drag measured for the same swimmers. 

 

Nomenclature 

kD: Coefficient of drag 

kP: Coefficient of propulsion 

Da: Active drag (N) 

Dp: Passive drag (N) 

SR: Stroke rate (Hz) 

SRi: Stroke rate when a swimmer propels himself in a water flume at i m s−1 (Hz) 
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Tre: Residual thrust (N) 

U: Flow velocity in the water flume (m s−1) 

UP: Virtual movement velocity of a swimmer’s body relative to water (m s−1) 

UTre0: Flow velocity at Tre = 0 (m s−1) 

VP: Virtual movement velocity of the swimmer’s body relative to the fixed coordinates on the water 

flume (m s−1)  

VSi: Targeted swimming velocity for estimating the active drag (m s−1) 

 

 

2．Methods 

2.1. Basic principle of a new method for estimating the drag in swimming using measured values of 

residual thrust (MRT) 

Swimming velocity depends on the interaction between two forces: one is generated to propel the 

swimmer forward (propulsion), whereas the other acts in the direction that prevents propulsion 

(drag). For instance, when the drag is larger than the propulsion, the swimmer decelerates. In a 

water flume that can be used to freely adjust the flow velocity (U), the relations between the 

swimming velocity, propulsion (P), and drag (D) can be formulated from the characteristics of 

hydrodynamic forces, which are proportional to the square of the velocity (Assumption 1): 
2

D UkD    (1) 
2

PP UkP    (2) 

where kD represents the coefficient of drag and kP represents the coefficient of propulsion, both of 

which include the density of water and the representative area. For the sake of simplicity, we do not 

consider intra-cyclic variations in kD and kP, only their average values within a complete swimming 

cycle. Note that UP represents the virtual movement velocity of a swimmer’s body relative to water, 

which is needed in order to produce propulsion using the upper and lower limbs. For example, UP 

can be considered to be the hand velocity required to push water. However, the hand does not always 

push water at velocity UP. Furthermore, other body parts also contribute to producing propulsion. 

Therefore, UP can be considered to be a sort of average for the movement in time of body parts 

through the stroke cycle. When a swimmer swims while maintaining a constant position in a water 

flume whose flow velocity is U, UP becomes 

UVU  PP   (3) 

where VP represents the virtual movement velocity of the swimmer’s body relative to the fixed 

coordinates of the water flume (not to the water). Therefore, substituting Eq. (3) into Eq. (2), we get 

 2
PP UVkP   (4) 

If the swimmer maintains the same technique, body position and kinematics, e.g., stroke rate, when 

the flow velocity changes, the values of kP, kD, and VP are expected to remain unchanged 
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(Assumption 2); therefore, the propulsion and drag will only vary depending on the flow velocity 

(U). Assumption 2 is considered to be valid when the stroke rate is maintained as U is changed. For 

instance, as a swimmer swims freely in a water flume in which U is set at i m s−1, if the swimmer 

can keep himself in a given position, the propulsion and drag acting on the swimmer must be 

balanced. We defined such a swimming velocity condition as a benchmark and termed it the 

“targeted swimming velocity for estimating the active drag” (VSi). Under the assumption that the 

swimmer maintains a certain stroke rate at VSi, if U is changed and set to be lower than VSi, resistive 

forces decrease and propulsive forces increase. In contrast, when U > VSi, resistive forces increase 

and propulsive forces decrease. Therefore, a difference between propulsion and drag occurred from 

changing U. For these experimental conditions, we named the difference between propulsive and 

resistive forces the “residual thrust” (Tre) and formulated Tre as follows: 

DPT re   (5) 

Thus, Tre = 0 when U = VSi because under this condition, P = D; for U < VSi, Tre > 0 because under 

this condition, P > D; finally for U > VSi, Tre < 0 because P < D. 

Substituting Eqs. (1) and (4) into Eq. (5), we get 

  2
D

2
PPre UkUVkT   (6) 

Then, expanding Eq. (6), we get 

  2
PPPP

2
DPre 2 VkUVkUkkT   (7) 

In Eq. (7), for a given U, since kD, kP, and VP are assumed to be constant (Assumption 2), Tre changes 

only as a function of U. We derived constant values of kD, kP, and VP by adapting the function of Eq. 

(7) to approximate the actual measured Tre values that occurred in response to U. Accordingly, the 

active drag when a swimmer swims with a certain stroke at VSi was derived by substituting for kD 

in Eq. (1). More information on deriving kD is described in the appendix. 

 

2.2. Participants 

Six male competitive swimmers participated in this study. The anthropometric details and 

performance level of each swimmer are given in Table 1. The test procedures were approved by the 

University of Tsukuba Ethics Committee (approval number: 26-69), and all participants signed the 

informed consent forms. 
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Table 1. Anthropometric data for swimmers and long-course front-crawl performance. 

 

 

 

2.3. Data processing 

The active and passive drags were measured in a water flume (Igarashi Industrial Works Co. Ltd., 

Japan) that allowed the flow velocity to be precisely controlled. This channel had a control system 

for solving heterogeneous systems with respect to an unbalanced flow distribution. We used two 

load cells (LUX-B-2KN-ID, Kyowa Electronic Instruments Co. Ltd., Japan) (rating capacity: ±2 

kN, measurement error: ±0.15%) that were sampled at 50 Hz and used a sensor interface (PCD-

330B-F，Kyowa Electronic Instruments Co. Ltd., Japan) linked to a personal computer. To measure 

only the horizontal component forces, the angles of inclination of each wire, θ1 and θ2 (Fig. 1), were 

considered. In all trials, swimmers used a snorkel to eliminate the influence of the breathing motion, 

and all of them wore the same type of swimsuit to avoid a difference in the resistance because of 

the swimsuit type. 

Active drag was evaluated for the front-crawl swimming stroke using the new methodology 

for estimating drag in swimming (MRT). Regarding the targeting swimming velocity for estimating 

the active drag (VSi), we adopted five-staged velocity from i = 1.0 to 1.4 m s−1. All stages were 

measured on the same day and the participants were provided with enough rest to deal with the 

influence of fatigue. Table 2 illustrates an example of a measurement procedure using the stage with 

i = 1.00 m s−1 (VS1.00). In deriving a regression equation from Eq. (7), we made the assumption that 

the swimmer must be able to maintain the same technique, i.e., the same stroke rate, at VS1.00 within 

the range of 0.80  U  1.20 m s−1. Thus, each swimmer was instructed to maintain the stroke motion 

and stroke rate SR1.00 at VS1.00 even when U was changed. The SR1.00 value was measured while each 

swimmer swam at VS1.00. It was then calculated from the reciprocal of the 10-stroke time (defined 

as the duration of 10 strokes, which was timed from the entry of the right hand on the first stroke to 

the entry of the same hand after the 10th stroke). To make it easy for the swimmer to maintain the 

Age Height Mass

(year) (cm) (kg) (s)

A 21   170   63   51.5

B 19   177   72   52.5

C 21   169   70   52.5

D 19   173   77   52.9

E 21   169   59   53.0

F 19   169   63   53.2

Mean 20.0 171.2 67.3 52.6

SD 1.0 3.0 6.2 0.6

100mFreestyle
Swimmer
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motion and SR1.00 at different U values, the swimmer relied not on his own subjective senses but on 

a sound that had the same interval as SR1.00, which was produced using a small waterproof 

metronome (FINIS Inc., USA). As indicated in Fig. 2, using this procedure, swimmers were indeed 

able to maintain a constant stroke rate equal to SR1.00 (at VS1.00) when U was changed; this was true 

for all investigated speeds (VSi). To measure Tre at each value of U (0.80  U  1.20 m s−1), the 

swimmer was towed in both directions (Fig. 3). The forward (D) and backward (P) forces were 

measured for 10 s after steady-state conditions were attained (measurements were started from the 

entry phase of the right hand). Then, Tre was calculated from the difference between the forward 

and backward towing forces (Fig. 4, right panel). The average values of Tre over 10 s were calculated 

and used in the analysis. Best-fit regression curves were derived for the measured values of Tre by 

adjusting the coefficient and constant terms in Eq. (7) (i.e., kD, kP, and VP) using the method of least 

squares (MATLAB 2014a, Math Works Inc.). Finally, the active drag (Da) was derived by 

substituting kD and UTre0 (Tre intersecting the x-axis at zero in Eq. (7)) when the swimmer swam at 

VS1.00. Furthermore, Da values at other VSi velocities were derived using the same procedure. As 

shown in the left panel of Fig. 3, kD, kP, and VP changed with VSi, and the swimming motion since 

Assumption 2 applied only when the swimmer maintained the same swimming motion. To 

investigate the variability of MRT, Da at VS1.20 was estimated five times over three days for two 

swimmers. The coefficients of variability for Da, UTre0, and SR1.20 were calculated from the ratio of 

each standard deviation to each mean value for the five trials at VS1.20. 

Passive drag (Dp) was measured by towing the swimmers, who maintained streamlined 

positions. The swimmers were towed forward and the forces were measured for 5 s at values of U 

ranging from 0.9 to 1.5 m s−1 in 0.1 m s−1 intervals. To compare Dp and Da for the same swimmers, 

the average measured values of Dp over 5 s were calculated for each value of U. 
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Table 2. Measurement procedure using the stages of i = 1.00 m s−1 (VS1.00). Initially, the stroke rate (SR1.00) 

and swimming motion at U = 1.00 m s−1 (VS1.00) are examined. The swimmer is then instructed to maintain 

the stroke motion and stroke rate SR1.00 at different flow velocities (0.80  U  1.20 m s−1). 

Trial no. 
Flow velocity 

: U (m s−1) 
Notes 

1 1.00  
Measured 

stroke rate (= SR1.00) 

↓ Maintain the specified stroke technique and SR1.00 ↓ 

2 0.80    

3 0.85    

4 0.90    

5 0.95    

6 1.00    

7 1.05    

8 1.10    

9 1.15    

10 1.20    

  

 

  

Fig. 1. Bird’s eye view of the measurement process. A swimmer is towed in both directions and is 

connected to each load cell through non-elastic wires. The forces measured in both directions are 

processed through a sensor interface, which is linked to a load cell sampled at 50 Hz, and is inputted to 

a personal computer. Furthermore, springs are used to prevent slack in the wire, caused by fluctuations 

in the longitudinal direction, and the effects of tension caused when a swimmer alternates acceleration 

and deceleration in a stroke cycle. 
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Fig. 2. The results of the stroke rate at VS1.00 and VS1.20 (corresponding to Fig. 3) over several flow velocities 

(U) for swimmer A. The results of SR1.00 and SR1.20 evaluated from motion analysis were 0.45  0.01 Hz 

(coefficient of variation: CV = 0.6%) and 0.53  0.01 Hz (CV = 1.0%), respectively. Therefore, we 

considered that Assumption 2 was valid from the standpoint of the near-constant SR. 

 

 

 

Fig. 3. Relation between flow velocity U and residual thrust Tre at VS1.00 and VS1.20 (left panel) and 

measured force values at U = 1.30 m s−1 (right panel) for swimmer A. In the right panel, Tre (the solid 

line) is calculated by subtracting the forward towing forces (defined as drag; dashed line) from the 

backward towing forces (defined as propulsion; dotted line). Then, in the left panel, the regression curve 

(gray line) is derived from the best fit for the measured Tre values (black dots). It is assumed that the 

values of kD, kP, and VP on the line for VS1.00 are constant (from Assumption 2). Conversely, for the line 

of VS1.20, these values are different from the values of VS1.00 because Assumption 2 is valid only when the 

swimmer maintains the same swimming motion. 
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3．Results 

The active drag (Da), velocity at Tre = 0 (UTre0), coefficient of drag (kD), and stroke rate (SR) for 

each swimmer over five stages are shown in Table 3. In addition, Da and Dp for each swimmer is 

shown in Fig. 4. Moreover, the D vs. v relations in passive and active conditions were calculated for 

each subject and are also shown in Fig. 4. When pooling together data from all subjects, the relations 

can be expressed as Da = 32.3 v3.3, N = 30, R2 = 0.90, and Dp = 23.5 v2.0, N = 42, R2 = 0.89. We 

would report, in this Fig. 4, only the regression lines (both for Da and Dp) not the individual 

equations. 

In the results on the variability in Da at VS1.20 for two swimmers, Swimmer A had a 

variability of 6.5% (48.1 ± 3.1 N), whereas Swimmer B had a variability of 3.0% (48.7 ± 1.4 N). 

Furthermore, the variability in UTre0 was 2.2% (1.15 ± 0.03 m s−1) and 2.3% (1.15 ± 0.03 m s−1), 

and that of SR1.20 was 2.1% (0.52 ± 0.01 Hz) and 1.1% (0.48 ± 0.01 Hz) for Swimmers A and B, 

respectively. 

 

 

Table 3. Results of active drag (Da: N), calculated velocities from the regression curve (UTre0: m s−1), 

coefficient of drag (kD), and stroke rate (SR: Hz) for each swimmer at five-stage velocities ranging from 1.0 

to 1.4 m s−1. 

 

 

  

Da U Tre0 k D SR Da U Tre0 k D SR Da U Tre0 k D SR

(N) (m s
-1

) (Hz) (N) (m s
-1

) (Hz) (N) (m s
-1

) (Hz)
1 25.1 1.02 24.3 0.45 28.6 0.95 31.5 0.41 28.4 0.98 29.4 0.40

2 42.9 1.09 36.4 0.46 40.8 1.13 32.2 0.44 50.3 1.11 40.8 0.41
3 46.4 1.17 33.7 0.53 48.6 1.19 34.6 0.49 62.7 1.16 46.4 0.45

4 54.3 1.21 37.2 0.57 55.0 1.23 36.2 0.56 73.9 1.22 49.6 0.50
5 84.2 1.34 47.0 0.70 73.2 1.37 39.0 0.69 95.3 1.37 51.0 0.59

Da U Tre0 k D SR Da U Tre0 k D SR Da U Tre0 k D SR
(N) (m s

-1
) (Hz) (N) (m s

-1
) (Hz) (N) (m s

-1
) (Hz)

1 26.8 0.95 29.5 0.43 49.7 1.09 41.8 0.41 31.8 0.99 32.6 0.41
2 43.7 1.09 36.9 0.46 54.0 1.12 42.9 0.42 45.9 1.06 40.5 0.43

3 54.7 1.19 38.8 0.49 66.3 1.18 47.7 0.45 53.5 1.13 41.8 0.49
4 69.9 1.27 43.5 0.56 89.0 1.30 53.0 0.51 68.0 1.24 44.2 0.56

5 100.4 1.39 51.8 0.64 103.3 1.38 54.2 0.59 84.0 1.34 46.6 0.65

Stage
A B C

Stage

D E F
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Fig. 4. Results of active and passive drags for each swimmer. We would report, in this figure, only the 

regression lines (both for Da and Dp) not the individual equations. 
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4．Discussion 

The variability in Da evaluated using MRT indicated differences for both swimmers (Swimmer A: 

6.5%, Swimmer B: 3.0%). As for the cause, we believe that in reality, the variability in SR 

influenced the variability in Da. Thus, it can be considered that Da as estimated using MRT was 

also impacted by the difference in SR, which was influenced by various factors such as the 

swimmers’ conditions and fatigue level. From a previous study on undulatory underwater swimming 

which reported on the variability in human movement (Connaboy, Coleman, Moir, & Sanders, 2010), 

we know that differences in motion are a common occurrence when the same swimmers repeatedly 

perform the same trial. Thus, since Assumption 2 is technically valid only when a swimmer 

maintains the same exact swimming motion and stroke rate, in reality, the change in the kinematics 

influenced the variability in Da estimated using the MRT. For this reason, we consider the variability 

in this study to be caused by the influence of human error rather than any systematic error. Hence, 

this new methodology can be considered to be capable of evaluating a correct Da value that reflects 

a swimmer’s condition during a given day.  

Additionally, concerning the prerequisite for the MRT (Assumption 2: a swimmer maintains 

a certain stroke while Tre is measured at different values of U), the maintenance of a certain stroke 

by the swimmers was also confirmed by measuring the SR for each trial using a stopwatch and using 

visual confirmation, not just by setting the required frequency on the waterproof metronome. As 

indicated in Fig. 2, using this procedure, swimmers were indeed able to maintain a fairly constant 

stroke rate when U was changed. As an example, the coefficients of variation for data reported in 

this figure (SR1.00 and SR1.20 at VS1.00 and VS1.20, respectively, for one swimmer) were of 0.6% and 

1.0%, respectively. Therefore, it can be assumed that Assumption 2 was valid experimentally 

because the swimmers maintained a near-constant stroke in different flow velocities, with the small 

variations in SR resulting in small variations in Da because of human error. Furthermore, in a 

preliminary experiment, we confirmed that the times of each stroke phase and movement pattern 

were not altered for different values of U. 

For Dp, our values are similar to those reported by others (e.g., Zamparo, Gatta, Pendergast 

and Capelli (2009); Chatard, Lavoie, Bourgoin and Lacour (1990)); indeed, as reported by Havriluk 

(2007), the Dp data were very similar across different experimental procedures. Therefore, the 

validity of the apparatus and conditions in this study was confirmed. For Da, previous studies 

reported quite different results because of the differences in the anthropometric and technical 

characteristics of the swimmers observed as well as because of the differences in the adopted 

methodologies. All these adopted methodologies have their pros and cons (for a discussion on this 

point, the reader is referred to papers by Sacilotto, Ball, and Mason (2014), Toussaint et al. (2004), 

and Zamparo et al. (2009)). For these same reasons, despite the difficulty in directly comparing our 

data with that reported in the literature, our results indicate that Da values obtained using MRT are 
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larger than Dp; this agrees with the findings of some previous studies (e.g., Di Prampero et al., 1974; 

Formosa et al., 2012; Gatta, Cortesi, Fantozzi, & Zamparo, 2015; Zamparo et al., 2009) but not with 

others in which Da was reported to be equal (or even lower) than Dp (e.g., Hollander et al., 1986; 

Toussaint et al., 1988; Toussaint et al., 2004; Van der Vaart et al., 1987). As recently pointed out by 

Gatta et al. (2015), Da should be expected to be larger than Dp. This is because the frontal projected 

area of Da when the swimmers perform a swimming motion to propel themselves forward is larger 

than the area of Dp in the streamlined position (the smallest frontal projected area against the 

traveling direction). The lack of a common finding in the determination of Da in swimming studies 

was indeed the reason why we wanted to establish a new methodology for evaluating drag in 

swimming (MRT) by gathering findings about drag in swimming, i.e., active drag in various 

situations (swimming styles and velocities). Furthermore, the results in this study indicate that the 

values of Da obtained using the MRT were approximately proportional to the cube of the velocity 

and not the square. This is thought to be the cause of the changes in the swimming motion and 

stroke rate when increasing VSi, contrary to Dp. Therefore, it is necessary to gain a further 

understanding of factors that influence Da by analyzing the relation between the kinematics and Da. 

 

5．Future prospects 

In this study, we evaluated active drag at various velocities for front-crawl swimming with lower 

limb motion. However, the new methodology (measured values of residual thrust; MRT) is special 

in that it is applicable to various swimming styles. Therefore, the evaluation of the active drag (Da) 

using MRT would allow us to compare Da for different swimming styles and motions (techniques) 

as well as to evaluate swimming efficiency by estimating physiological indices, e.g., oxygen uptake. 

Hence, in the future, the evaluation of drag in swimming using MRT is expected to play a role in 

establishing fundamental swimming data. It has the potential to provide swimmers and coaches with 

beneficial information for improving swimming performance. 
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Appendix 

The coefficient and constant terms in Eq. (7) are replaced with , , and : 

  UUT 2
re   (8) 

That is, 

DP kk    (9) 

PP2 Vk    (10) 
2

PP Vk    (11) 

From Eq. (9), 

 PD kk  (12) 

where kP is derived from Eqs. (10) and (11); 
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Pk  (13) 

When Eq. (13) is substituted into Eq. (12), kD can be expressed in terms of α, β, and γ. 


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Dk  (14) 

We derived the coefficient and constant terms in Eq. (8) (i.e., α, β, and γ) by best-fitting the measured 

values of Tre using the method of least squares (Fig. 3, left panel). Accordingly, the active drag (Da) 

was derived by substituting kD and UTre0 (Tre intersecting the x-axis at zero in Eq. (8)) into Eq. (1) 

when the swimmer swam with a certain stroke at VSi. 

 


