125 research outputs found

    Evidence for repetitive load in the trapezius muscle during a tapping task

    Get PDF
    Many studies describe the trapezius muscle activation pattern during repetitive key-tapping focusing on continuous activation. The objectives of this study were to determine whether the upper trapezius is phasically active during supported key tapping, whether this activity is cross-correlated with forearm muscle activity, and whether trapezius activity depends on key characteristic. Thirteen subjects (29.7±11.4years) were tested. Surface EMG of the finger's extensor and flexor and of the trapezius muscles, as well as the key on-off signal was recorded while the subject performed a 2-min session of key tapping at 4Hz. The linear envelopes obtained were cut into single tapping cycles extending from one onset to the next onset signal and subsequently time-normalized. Effect size between mean range and maximal standard deviation was calculated to determine as to whether a burst of trapezius muscle activation was present. Cross-correlation was used to determine the time-lag of the activity bursts between forearm and trapezius muscles. For each person the mean and standard deviation of the cross-correlations coefficient between forearm muscles and trapezius were determined. Results showed a burst of activation in the trapezius muscle during most of the tapping cycles. The calculated effect size was ≥0.5 in 67% of the cases. Cross-correlation factors between forearm and trapezius muscle activity were between 0.75 and 0.98 for both extensor and flexor muscles. The cross-correlated phasic trapezius activity did not depend on key characteristics. Trapezius muscle was dynamically active during key tapping; its activity was clearly correlated with forearm muscles' activit

    The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization

    Get PDF
    Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling

    Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function

    Get PDF
    BACKGROUND: Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE: RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats

    Evidence for repetitive load in the trapezius muscle during a tapping task

    Full text link
    Many studies describe the trapezius muscle activation pattern during repetitive key-tapping focusing on continuous activation. The objectives of this study were to determine whether the upper trapezius is phasically active during supported key tapping, whether this activity is cross-correlated with forearm muscle activity, and whether trapezius activity depends on key characteristic. Thirteen subjects (29.7±11.4years) were tested. Surface EMG of the finger's extensor and flexor and of the trapezius muscles, as well as the key on-off signal was recorded while the subject performed a 2-min session of key tapping at 4Hz. The linear envelopes obtained were cut into single tapping cycles extending from one onset to the next onset signal and subsequently time-normalized. Effect size between mean range and maximal standard deviation was calculated to determine as to whether a burst of trapezius muscle activation was present. Cross-correlation was used to determine the time-lag of the activity bursts between forearm and trapezius muscles. For each person the mean and standard deviation of the cross-correlations coefficient between forearm muscles and trapezius were determined. Results showed a burst of activation in the trapezius muscle during most of the tapping cycles. The calculated effect size was ≥0.5 in 67% of the cases. Cross-correlation factors between forearm and trapezius muscle activity were between 0.75 and 0.98 for both extensor and flexor muscles. The cross-correlated phasic trapezius activity did not depend on key characteristics. Trapezius muscle was dynamically active during key tapping; its activity was clearly correlated with forearm muscles' activit

    Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib

    No full text
    We explored the impact of early molecular response (EMR; BCR-ABL ≤10% on the international scale [BCR-ABL(IS)] at 3 or 6 months) on outcomes in patients with newly diagnosed chronic myeloid leukemia in chronic phase treated with nilotinib or imatinib based on 4 years of follow up in Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Newly Diagnosed Patients. Patients (n = 846) received nilotinib 300 mg twice daily, nilotinib 400 mg twice daily, or imatinib 400 mg once daily. At 3 months, more patients had EMR failure (ie, BCR-ABL(IS) >10%) on imatinib (33%) than on nilotinib (9%-11%); similarly at 6 months, 16% of patients in the imatinib arm vs 3% and 7% in the nilotinib arms had EMR failure. In all arms, EMR failure was associated with lower rates of molecular response, an increased risk of progression, and lower overall survival compared with EMR achievement. We also analyzed patient and treatment characteristics associated with EMR and found distinct patterns in the nilotinib arms vs the imatinib arm. High Sokal risk score was associated with a high rate of EMR failure on imatinib, but not on nilotinib. In contrast, reduced dose intensity and dose interruptions were strongly associated with EMR failure in nilotinib-treated, but not imatinib-treated, patients. This study is registered at www.clinicaltrials.gov as #NCT00471497.Timothy P. Hughes, Giuseppe Saglio, Hagop M. Kantarjian, François Guilhot, Dietger Niederwieser, Gianantonio Rosti, Chiaki Nakaseko, Carmino Antonio De Souza, Matt E. Kalaycio, Stephan Meier, Xiaolin Fan, Hans D. Menssen, Richard A. Larson, and Andreas Hochhau

    Chromosome Segregation: Keeping Kinetochores in the Loop

    Get PDF
    The Ndc80 complex is a key component of the kinetochore–microtubule interface. Two studies now demonstrate that a conserved loop region within the extended coiled-coil of Ndc80 plays an unexpected role in recruiting proteins to the kinetochore

    Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib

    No full text
    We explored the impact of early molecular response (EMR; BCR-ABL 10%) on imatinib (33%) than on nilotinib (9%-11%); similarly at 6 months, 16% of patients in the imatinib arm vs 3% and 7% in the nilotinib arms had EMR failure. In all arms, EMR failure was associated with lower rates of molecular response, an increased risk of progression, and lower overall survival compared with EMR achievement. We also analyzed patient and treatment characteristics associated with EMR and found distinct patterns in the nilotinib arms vs the imatinib arm. High Sokal risk score was associated with a high rate of EMR failure on imatinib, but not on nilotinib. In contrast, reduced dose intensity and dose interruptions were strongly associated with EMR failure in nilotinib-treated, but not imatinib-treated, patients. This study is registered at www.clinicaltrials.gov as #NCT00471497.123913531360Novartis Pharmaceuticals Corporatio
    corecore