19,726 research outputs found
Planet formation around stars of various masses: The snow line and the frequency of giant planets
We use a semi-analytic circumstellar disk model that considers movement of
the snow line through evolution of accretion and the central star to
investigate how gas giant frequency changes with stellar mass. The snow line
distance changes weakly with stellar mass; thus giant planets form over a wide
range of spectral types. The probability that a given star has at least one gas
giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars
more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the
snow line to 10-15 AU before protoplanets form and limits the range of disk
masses that form giant planet cores. If the frequency of gas giants around
solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars
and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed
model parameters. Finally, the movement of the snow line as stars >2.5 M_sun
move to the main-sequence may allow the ocean planets suggested by Leger et.
al. to form without migration.Comment: Accepted to ApJ. 12 pages of emulateap
On the Origin of Density Cusps in Elliptical Galaxies
We investigated the dynamical reaction of the central region of galaxies to a
falling massive black hole by N-body simulations. As the initial galaxy model,
we used an isothermal King model and placed a massive black hole at around the
half-mass radius of the galaxy. We found that the central core of the galaxy is
destroyed by the heating due to the black hole and that a very weak density
cusp (, with ) is formed around the
black hole. This result is consistent with recent observations of large
elliptical galaxies with Hubble Space Telescope. The velocity of the stars
becomes tangentially anisotropic in the inner region, while in the outer region
the stars have radially anisotropic velocity dispersion. The radius of the weak
cusp region is larger for larger black hole mass. Our result naturally explains
the formation of the weak cusp found in the previous simulations of galaxy
merging, and implies that the weak cusp observed in large elliptical galaxies
may be formed by the heating process by sinking black holes during merging
events.Comment: 14 pages with 29 EPS figures; LaTeX; new results added; accepted for
publication in Ap
Small Structures via Thermal Instability of Partially Ionized Plasma. I. Condensation Mode
(Shortened) Thermal instability of partially ionized plasma is investigated
by linear perturbation analysis. According to the previous studies under the
one fluid approach, the thermal instability is suppressed due to the magnetic
pressure. However, the previous studies did not precisely consider the effect
of the ion-neutral friction, since they did not treat the flow as two fluid
which is composed of ions and neutrals. Then, we revisit the effect of the
ion-neutral friction of the two fluid to the growth of the thermal instability.
According to our study, (1) The instability which is characterized by the mean
molecular weight of neutrals is suppressed via the ion-neutral friction only
when the magnetic field and the friction are sufficiently strong. The
suppression owing to the friction occurs even along the field line. If the
magnetic field and the friction are not so strong, the instability is not
stabilized. (2) The effect of the friction and the magnetic field is mainly
reduction of the growth rate of the thermal instability of weakly ionized
plasma. (3) The effect of friction does not affect the critical wavelength
lambdaF for the thermal instability. This yields that lambdaF of the weakly
ionized plasma is not enlarged even when the magnetic field exists. We insist
that the thermal instability of the weakly ionized plasma in the magnetic field
can grow up even at the small length scale where the instability under the
assumption of the one fluid plasma can not grow owing to the stabilization by
the magnetic field. (4) The wavelength of the maximum growth rate of the
instability shifts shortward according to the decrement of the growth rate,
because the friction is effective at rather larger scale. Therefore, smaller
structures are expected to appear than those without the ion-neutral friction.Comment: To appear in Ap
Critical magnetic field in AdS/CFT superconductor
We have studied a holographically dual description of superconductor in
(2+1)-dimensions in the presence of applied magnetic field, and observed that
there exists a critical value of magnetic field, below which a charged
condensate can form via a second order phase transition.Comment: 8 pages, 3 figures, REVTeX v4. Typos corrected and Fig.3 replace
A quantum Monte Carlo study on the superconducting Kosterlitz-Thouless transition of the attractive Hubbard model on a triangular lattice
We study the superconducting Kosterlitz-Thouless transition of the attractive
Hubbard model on a two-dimensional triangular lattice using auxiliary field
quantum Monte Carlo method for system sizes up to sites.
Combining three methods to analyze the numerical data, we find, for the
attractive interaction of , that the transition temperature stays almost
constant within the band filling range of , while it is found to
be much lower in the region.Comment: RevTeX 6 page
Enhanced energy relaxation process of quantum memory coupled with a superconducting qubit
For quantum information processing, each physical system has different
advantage for the implementation and so hybrid systems to benefit from several
systems would be able to provide a promising approach. One of the common hybrid
approach is to combine a superconducting qubit as a controllable qubit and the
other quantum system with a long coherence time as a memory qubit. The
superconducting qubit allows us to have an excellent controllability of the
quantum states and the memory qubit is capable of storing the information for a
long time. By tuning the energy splitting between the superconducting qubit and
the memory qubit, it is believed that one can realize a selective coupling
between them. However, we have shown that this approach has a fundamental
drawback concerning energy leakage from the memory qubit. The detuned
superconducting qubit is usually affected by severe decoherence, and this
causes an incoherent energy relaxation from the memory qubit to the
superconducting qubit via the imperfect decoupling. We have also found that
this energy transport can be interpreted as an appearance of anti quantum Zeno
effect induced by the fluctuation in the superconducting qubit. We also discuss
a possible solution to avoid such energy relaxation process, which is feasible
with existing technology
Milling characteristics and distribution of phytic acid and zind in long-, medium- and short-grain rice
Milling and polishing are important operations during the production of white rice. The degree of milling and polishing has a significant effect on the nutritional aspects of white rice, especially on minerals, due to a non-uniform distribution of nutrients in the kernel. Information on the distribution of nutrients in rice will greatly help in understanding the effect of milling and aid in designing procedures that improve technological and sensory properties of rice while retaining its essential nutrients as much as possible. In this study, three kernel shapes (short-, medium- and long-grain) of rice were selected for the study of milling characteristics and distribution of zinc (Zn) and phytic acid using abrasive milling and X-ray fluorescent microscope imaging approaches. Milling characteristics differed with kernel shapes and cultivars. Mass loss (y, %) correlated well with milling duration (x, s) and was fitted using a polynomial equation of y=ax2+bx+c (R2=0.99). Different kernel shapes of rice resulted in different patterns. Breakage in milling increased with longer duration of milling. The relation between breakage (y, %) and milling duration (x, s) fitted the exponential equation y=aebx. Levels of phytic acid, as well as Zn, decreased with prolonged milling. Phytic acid decreased at a higher rate than Zn. The analysis of different milling runs showed that the concentration of phytic acid decreased from the surface region inward, whereas X-ray fluorescent images indicated that the highest concentration of phosphorus was at the interface of the embryo and perisperm. Our results help in understanding the milling characteristics of different rice cultivars. Understanding these characteristics offers opportunities to optimize milling procedures for maximum phytate removal at minimum mineral losses and yield los
- …