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Abstract23
24

Milling and polishing are important operations during the production of white rice. The 25
degree of milling and polishing has a significant effect on the nutritional aspects of white rice, 26
especially on minerals, due to a non-uniform distribution of nutrients in the kernel. 27
Information on the distribution of nutrients in rice will greatly help to understand the effect of 28
milling and aid in designing procedures that improve technological and sensory properties of 29
rice while retaining its essential nutrients as much as possible. In this study, three kernel 30
shapes (short-, medium- and long-grain) of rice were selected for the study of milling 31
characteristics and distribution of zinc (Zn) and phytic acid using abrasive milling and X-ray 32
fluorescent microscope imaging approaches.33

Milling characteristics differed with kernel shapes and cultivars. Mass loss (y, %)34
correlated well with milling duration (x, s) and was fitted using a polynomial equation of y = 35
ax2+bx+c (R2=0.99). Different kernel shapes of rice resulted in different patterns. Breakage in 36
milling increased with longer duration of milling. The relation between breakage (y, %) and 37
milling duration (x, s) fitted the exponential equation y = aebx. Levels of phytic acid, as well 38
as Zn decreased with prolonged milling. Phytic acid decreased at a higher rate than Zn. The 39
analysis of different milling runs showed that the concentration of phytic acid decreased from 40
the surface region inward, whereas X-ray fluorescent images indicated that the highest 41
concentration of phosphorus was at the interface of embryo and perisperm.42

Our results help to understand the milling characteristics of different rice cultivars. 43
Understanding these characteristics offers opportunities to optimize milling procedures for 44
maximum phytate removal, at minimum mineral losses and yield loss.45

46

Key words: mass loss, breakage, rice kernel, distribution, abrasive methods, X-ray fluorescent 47
microscope imaging48
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Introduction64

65
Rice is one of the important cereals in the world. It is commonly used as milled (white) rice 66
produced by removing the hull and bran layer of the rough rice kernel (paddy) (Perdon et al., 67
2001). Brown rice (hulled rice) is composed of surface bran (6-7% by weight), endosperm (≈68
90%) and embryo (2-3%) (Chen et al., 1998). White rice is referred to as milled, polished or 69
whitened rice when 8-10% of mass (mainly bran) has been removed from brown rice 70
(Kennedy et al., 2002). During milling, brown rice is subjected to abrasive or friction pressure 71
to remove bran layers resulting in high, medium or low degrees of milling depending on the 72
amount of bran removed (Chen, Siebenmorgen, 1997; Chen et al., 1998). Milling brings about 73
considerable losses of nutrients and affects the edible properties of milled rice (Chen et al.,74
1998; Doesthale et al., 1979). As most cereals, rice does not show a homogeneous structure 75
from its outer (surface) to inner (central) portions (Itani et al., 2002). As a consequence, 76
information on the distribution of nutrients will greatly help to understand the effect of 77
milling and aid in improving sensory properties of rice while retaining its essential nutrients 78
as much as possible.79

Depending on the extent of milling, changes of some nutrients, such as surface lipids 80
(Chen et al., 1998; Perdon et al., 2001), protein (Chen et al., 1998; Heinemann et al., 2005), 81
physical properties such as rice paste viscosity (Perdon et al., 2001), and sensory quality of 82
milled rice, including taste (Park et al., 2001; Tran et al., 2004), have been reported. Effect of 83
milling on some macro- and micro-elements, e.g. iron, magnesium, phosphorus, phytic acid, 84
have also been studied (Bryant et al., 2005). Early studies described the effect of milling on 85
minerals or distribution of minerals according to approximate milling degrees, such as lightly 86
milled, reasonably milled and well milled, or as fractions I, II and III, respectively (Kennedy, 87
Schelstraete, 1975; Song et al., 1988; Tabekhia, Luh, 1979). These authors did not provide 88
detailed information about the distribution of these nutrients in rice kernels. Itani et al. (2002)89
reported the distribution of some nutrients in more detail, although phytic acid and trace 90
minerals were not included. Studies on Indian rice indicated that the extent of milling had a 91
significant effect on losses of magnesium and calcium, but not on phosphorus and trace 92
minerals (p<0.05) (Bajaj et al., 1989). Recently, X-ray fluorescent microscopy techniques 93
were developed and applied to map the distribution of minerals such as magnesium, 94
potassium, phosphorus, calcium and sulphur in quinoa seeds (Emoto et al., 2004; Konishi et 95
al., 2004).96

Considering world wide deficiencies of iron and Zn, our ultimate aim is to improve97
the bioavailability of these minerals by reducing insoluble mineral-phytate complexes, and 98
fortification if desired. As the Zn-phytate complex is very stable (Vasca et al., 2002), we 99
focussed on Zn as a target mineral. Our previous study indicated that Zn and phytate contents 100
in Chinese rice cultivars cover a broad range (Liang et al., 2007). The purpose of the present 101
study was to compare the milling characteristics and the distribution of Zn and phytic acid in 102
long-, medium- and short-grain kernels of rice from China, with a view to optimize for 103
maximum phytate removal at minimum losses of Zn. Precision abrasive milling was used to 104
obtain a range of milling degrees, and X-ray imaging methods to map the distribution of 105
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different minerals. The degree of milling for specific rice cultivars could be optimized for 106
maximum removal of phytic acid, maximum retention of Zn, and appropriate whiteness to 107
satisfy consumer expectations for white rice.108

109

Materials and methods110

111

Paddy rice and characteristics 112

Based on our survey of the variation of phytic acid and minerals in rice cultivars cultivated in 113
China (Liang et al., 2007), three cultivars namely Ganwanxian 30 (G30), Zhongyou 752 114
(Z752) and Bijing 37 (B37) having different levels of phytic acid and minerals were selected. 115
According to the industrial standard of China, the three cultivars were classified as long-grain, 116
medium-grain and short-grain, respectively (CHISA, 2002). G30 and Z752 were obtained 117
from the Jiangxi Seeds Company, and B37 from the Academy of Agricultural Science of 118
Guizhou. All paddies were harvested during the autumn of 2003 and were stored dry and cool 119
(~15C) less than 90 days before processing and analysis. General characteristics, including 120
crude protein content (PC), yield of brown rice (YBR), breakage from hulling, shape i.e. ratio 121
of length to width (RLW), kernel surface area (KSA), and thousand-kernel weight (TKW), are 122
presented in table 1. 123

124

Hulling and Milling125

Paddy was dehusked with a lab-scale hulling machine (THU-35C, Satake, Japan). Each 126
cultivar was assessed in triplicates for thousand-kernel weight (TKW), yield of brown rice127
(YBR) and breakage from hulling. 128

Only intact brown rice kernels were used for subsequent milling experiments. About 30129
( 1) g of brown rice were milled for the duration of 6, 10, 20, 30, 45, 60, 90, 180 and 300 s, 130
respectively, with a lab-scale milling machine (TM 05C, Satake, Japan) to obtain rice milled 131
to different degrees. Each milling treatment (duration) was performed in triplicates. Yields of 132
white rice and breakage from milling were measured. After milling, whole milled rice kernels 133
(head rice) were separated, and then ground with grinder (HY-04B, Beijing Xinhuanya, 134
China) to pass a 1 mm sieve, and dried at 100C till constant weight. Dried rice flour was kept 135
in sealed plastic bags at 4C until chemical analysis.136

Zinc (Zn)137

Samples of 0.5 g (accuracy 0.1 mg) dried rice flour were digested using a microwave 138
laboratory system (Milestone, Italy) with nitric acid (HNO3, reagent grade) and hydrogen 139
peroxide (H2O2, analytical reagent, Beijing Chemical Works, China) as described by D’Ilio et 140
al. (2002). Contents of Zn in solutions were measured with a Vario 6 Atomic Absorption 141
System (Analytik Jena, Germany). Each sample was digested and measured in triplicates.142

143
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Phytic acid 144

Phytic acid levels in brown rice and milled rice were determined after extraction in 100g L-1145
Na2SO4-HCl (1.2 %), concentration on an anion exchange column, and were analysed146
spectrophotometrically at 500 nm after reacting with a 0.03% FeCl3 solution containing 0.3% 147
sulfosalicylic acid, according to Ma et al. (2005). All materials were analysed in triplicates.148

149
150

Sample preparation for SEM151

Rice kernels were longitudinally mounted in a brass cylindrical sample holder with carbon 152
conductive glue (Leit- C, Neubauer Chemicalien, Germany). The samples were placed in a 153
sample holder in a ultra microtome (Reichert Ultracut E/FC4D) and cut. These samples were 154
first planed with a glass knife, after which the surface was planed with a diamond knife (Histo 155
no trough, 8 mm 45°C, Drukker International, The Netherlands). This method is based on  156
(Nijsse, Van Aelst, 1999).157

158

X-ray fluorescent imaging159

X-ray elemental maps were obtained with a micro-X-ray fluorescence instrument developed 160
at Osaka City University (Emoto et al., 2004). The X-ray tube (MCBM 50-0.6B, rtw,161
Germany) with Mo target was operated at 50 kV and 0.45 mA. The tube was installed into an 162
X-ray tube shield holder equipped with an X-Y-Z positional device, where the polycapillary 163
X-ray lens was attached. The polycapillary lens was designed and manufactured at Beijing 164
Normal University. The length, input focal distance, and output focal distance were designed 165
to be 50 mm, 34 mm, and 16 mm, respectively. A spot size of about 40 mm was obtained at a 166
focal point. A silicon drift X-ray detector (SDD, X-Flash Detector, Type 1201, Rontec, 167
Germany; sensitive area: 10 mm2, energy resolution: <150 eV at 5.9 keV) was suspended 168
using a down-looking geometry. The sample stage was placed on the X-Y-Z stage [YA05A-169
R1 (X-Y stage) and ZA07AR3S (Z stage); Kohzu precision, Japan], which was controlled by 170
stepping motors driven by a computer. To control the sample stage, motor drivers and a motor 171
controller (NT2400, Laboratory Equipment Co., Japan) were applied. An SDD signal was 172
analysed by a multi-channel analyser (NT2400/MCA, Laboratory Equipment Co., Japan). To 173
confirm the position of the sample, a visible CCD camera was also installed.174

175
Statistical analysis176
Where appropriate, data were presented as means with standard deviation, or by error bars. 177
Significance of differences was tested by two-tailed t-tests.178
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Results and discussion179

180

Milling characteristics181

For the miller, the main quality characteristic of rice is related to the amount of material that 182
needs to be removed to obtain white rice. During the abrasion of rice, not only the outer layers 183
of the kernels are removed, but also kernels are broken. These are also considered a loss. We 184
therefore defined milling characteristics as the mass loss due to bran removal, and breakage 185
during milling. The milling characteristics for the rice cultivars used in this study are shown 186
in figure 1a and 1b.187

Figures 1a and 1b show the loss of mass, and breakage, with increasing milling time. 188
For the three cultivars tested, mass losses (figure 1a) were similar: with increasing milling 189
duration more of the outer layers is removed. Loss rates become less at longer milling times.190
The relation of mass loss (y, %) vs duration of milling (x, s) fitted a polynomial equation of y 191
= ax2+bx+c  (R2=0.99), as was observed in other studies (Perdon et al., 2001; Singh Gujral et 192
al., 2002). Different kernel shape of rice resulted in different patterns. Z752 had a higher mass193
loss (figure 1a) at each milling time. To achieve a mass loss of 2%, it took less than 10 s for 194
Z752, and about 20 s for B37 and G30, respectively. Generally, in order to obtain white rice, 195
about 10-15% of mass is removed from the outer layers. In this study, Z752 required the 196
shortest duration of milling to obtain white rice, followed by B37 and G30. The differences 197
among mass loss patterns of the three cultivars might be related to the removal of the embryo. 198
Visual inspection to check the removal of the embryo from brown rice during milling 199
revealed a large variation between the different rice cultivars. Under our experimental milling 200
conditions, one third of the kernels of Z752 and B37 had lost their embryo after 30-45 s 201
milling, corresponding to a mass loss of 3.5-4.5%, whereas more than 90% of the kernels had 202
lost their embryo after 90 s milling, at mass loss of 8.5-9.5%. For G30, about 30% of kernels 203
had lost their embryo at 2% mass loss (20 s milling), whereas after 45 s milling, most kernels 204
had lost their embryo at a mass loss of 5%. 205

Rice breakage was quantified as the weight of broken rice expressed as a percentage 206
of the total weight of milled rice (Chen et al., 1998). Breakage of the three cultivars was 207
similar (figure 1b), increasing with longer duration of milling. The relation between breakage 208
(y, %) and milling duration (x, s) fitted the exponential equation y = aebx. The different 209
cultivars had different a and b values with a R2 ranging from 0.76 to 0.95. Of the three 210
cultivars, Z752 had the highest breakage values, and B37 had the lowest at each time interval. 211
After 90 s milling, breakage of Z752 had reached 30%, while breakage of B37 was still low 212
(about 5%). The amount of broken kernels of long-grain in the present study was of a similar 213
magnitude as of long-grain rice reported elsewhere (Chen et al., 1998). 214

215

Phytic acid and Zn levels216

Phytic acid and Zn levels in rice after increasing degrees of milling are presented in table 2. 217
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Levels of phytic acid and Zn decreased with prolonged milling. Although it has been 218
observed earlier (Itani et al., 2002) that all minerals (including phosphorus) decrease from the 219
outermost fraction, it appears here that phytic acid levels decrease at a higher rate than those 220
of Zn.221

Phytic acid levels in brown rice of B37, Z752 and G30 were 8.9, 7.8 and 11.1 g kg-1, 222
respectively. These values differ from our previous results (Liang et al., 2007) probably due 223
to differences of cultivating environments and agricultural practice (Liu et al., 2005a). G30 224
had the highest phytic acid content in raw brown rice and this decreased quickly during 225
milling. After 30 s milling, phytic acid levels in milled rice of B37 and Z752 were at the same 226
level (7 g kg-1) although they started at different initial values, and it was 8 g kg-1 in G30 after 227
the same milling time. After 120 s milling (duration considered to be optimum in commercial 228
milling of white rice), phytic acid in G30 and Z752 were still at the level of 3.2 g kg-1, higher 229
than in B37 (2.0 g kg-1). After 300 s milling, phytic acid in all cultivars were at the level of 230
0.2 g kg-1. Phytic acid levels in brown rice decreased at a similar rate as reported elsewhere 231
(Doesthale et al., 1979) for phosphorus. 232

The Zn levels in the brown rice cultivars studies did not decrease significantly (22.1, 233
22.8 and 19.3 mg kg-1, respectively), and even after 30 s milling (corresponding to a mass loss 234
of about 5%), the Zn levels in all cultivars of milled rice were still at the same level of brown 235
rice. The biggest lost of Zn in Z752 occurred after 45 s milling, and in B37 after 120 s milling. 236
However, in G30, up to 120 s milling did not affect its Zn level, a phenomenon that has been 237
previously reported (Juliano, 1972; Villareal et al., 1991). With some milled rice samples 238
even higher Zn levels were reported than in the initial brown rice (Heinemann et al., 2005). In239
the three cultivars studied here, Zn levels after 300 s milling were 4-38% lower than that of 240
initial values.241

242

Location and distribution of phytic acid and Zn in brown rice243

In order to visualize the distribution of phytic acid and Zn in brown rice, X-ray fluorescent244
microscope imaging techniques were used. Images of location of phytic acid (indicated as 245
phosphorus, P) and Zn obtained with X-ray fluorescent scanning, as well as the distribution of 246
phytic acid and Zn in brown rice kernels obtained by abrasive milling are shown in figures 2a, 247
2b and 2c and demonstrate the location of P and Zn in rice kernels.248

In all three cultivars, the density of phosphorus decreased from the surface region 249
inward. This agrees with data from abrasive milling experiments (Bryant et al., 2005). The 250
peripheral embryo region did not show high phosphorus intensities, whereas much higher 251
densities were observed near or at the interface of embryo and endosperm. We observed that 252
whereas in B37 (figure 2a) and G30 (figure 2c), the distribution of phosphorus was similar; 253
the distribution in Z752 (figure 2b) was different, having no distinct layer with higher 254
phosphorus concentration. Notably, at the side of the embryo, we could not observe the high 255
density of phosphorus as observed in figures 2a and 2c. The distribution of phosphorus in the 256
rice kernels suggested that at least the outer layer should be removed if we want to 257
significantly decrease phytic acid in milled rice, since 70-85% of phosphorus occurs as phytic 258
acid in rice. 259
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The location of Zn in the three cultivars was similar. All three cultivars had the highest 260
density of Zn in the embryo whereas Zn was relatively evenly distributed in the other regions. 261
This helps us to understand earlier reports, that milling degrees higher than 10% had little 262
effect on Zn levels in milled rice (Bryant et al., 2005). The location of Zn indicates that it may 263
be beneficial to retain more embryo to obtain higher final levels of Zn. 264

We observed an inverse relation: y = a-bx (a=7.7-8.3, b=0.03, R2=0.82-0.91) between 265
phytic acid levels (y, mg g-1) and milling duration (x, s) (figure 2a, 2b, 2c). This relation 266
shows some similarity with that between milling degree and surface lipid, and phenolic acids267
observed elsewhere (Perdon et al., 2001; Zhou, 2003). In B37 and Z752, about 23 to 33% of 268
total phytic acid was located in the surface outer layer of kernel (2-3% weight percent of 269
brown rice). In all cultivars, about 23-25% of total phytic acid was located in the sub-surface 270
layer, which accounted for 3.4-4.5% of total weight. Less than 2% of total phytic acid was 271
located in the 75-80% of central portion of kernel. The remaining 40-50% of phytic acid was 272
located in the peripheral layers of brown rice, representing 13-15% of kernel weight. The 273
distribution of phytic acid observed from milling experiments is very well supported by 274
images obtained from X-ray scanning. Differences in the distribution of phytic acid location 275
in cultivars mainly occurred in the outermost layer. In this region, distribution of phytic acid 276
in B37 and Z752 was similar, and relatively even at the outermost surface with a steep 277
decrease inward. However, the distribution in G30 was quite different, showing a steep 278
decrease already at the outermost surface layer, followed by a relatively even distribution. 279
This distribution pattern was similar to the distribution of phosphorus in other rice cultivars 280
(Bajaj et al., 1989). The perisperm is another layer of the kernel, removed at the interval of 281
milling duration from 60 s to 120 s. Phytic acid located here varied by 20-40%, with weight 282
percent at 4-6% in different cultivars.283

The distribution of Zn in the three cultivars was different. For B37, distribution of Zn 284
was relatively even in the layer occupied 30% of the total kernel weight, with a steep decrease 285
in next region, and followed with another even distribution in the central part. In contrast, in 286
Z752, a steep decrease of Zn occurred at sub-surface layer, at the milling interval from 30 to 287
60 s (occupied about 4% of total weight of kernel), and with an even distribution in other 288
parts. For G30, the distribution of Zn was relatively even from the surface to the central part 289
of the kernel. The highest decrease occurred at the interval of 60-120 s. Further analysis of 290
regression showed there was no correlation between Zn contents and milling duration. Figures291
2 also showed that more than 60-70% of total phytic acid was located in the 10% of surface 292
layer, and less than 40% of Zn was in the same layer. The different distribution patterns of 293
phosphorus and Zn should enable an optimized milling, removing as much as possible phytate 294
while retaining relevant levels (at least 50%) of Zn. 295

Molar ratios of phytic acid to Zn varied with regions in kernel and cultivars. For all 296
cultivars, only when more than 20% of outer layer was removed, molar ratios of phytic acid to 297
Zn could decrease to less than 1. This was achieved only after 300 s milling, which is 298
considerably longer than the standard commercial practice.299

300
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Discussion301

302
Milling consequences, such as mass loss and breakage, could be affected by intrinsic factors 303
(e.g., cultivar, kernel shape) as well as extrinsic factors (e.g., milling equipment). Under 304
identical processing conditions, rice can display different processing properties. These can be 305
caused by cultivar, maturity, and cultivating conditions, and can influence mass loss and 306
breakage because of different shape, hardness of kernels, and thickness of the aleurone layer 307
(Juliano, 1972; Zhou, 2003). Different bran loss rates by milling have been attributed to shape 308
and hardness of grains, as well as pericarp thickness, oil bodies, cellulose, and hemicelluloses 309
in bran layers (Juliano, 1972; Mohapatra, Bal, 2004; Singh Gujral et al., 2002; Singh et al., 310
2000). These would contribute to the differences observed for the three cultivars and the 311
higher mass loss rate after short milling periods. Cultivars differ in thickness of the aleurone 312
layer and in hardness distribution in the endosperm. Japonica (bold or coarse short-grain) 313
kernels tend to have more cell layers than indica (slender long- or medium- grain) kernels. 314
The central core and the mesocarp in indica and japonica, respectively are hard, and kernel 315
hardness is negatively correlated to length-to-breadth ratio (Juliano, 1972). Combined effects 316
of such factors may have caused the relatively high mass loss of Z752 from milling. 317

In addition to the effect of equipment and process conditions, the composition, 318
structure and thickness of rice kernels also affect the extent of breakage from milling 319
(Siebenmorgen, Qin, 2005; Zhou, 2003). Whereas breakage could not be related to kernel 320
width or length (Siebenmorgen, Qin, 2005), the susceptibility to relative humidity and 321
fissuring could play a role in breakage (Lloyd, Siebenmorgen, 1999). Further investigation is 322
required to help understand the mechanism for the high extent of breakage from milling in 323
Z752.324

Phytic acid is an important storage of phosphorus and minerals present in seeds. It 325
usually occurs as a mixed salt of potassium and magnesium, and may also contain calcium, 326
Zn and/or iron. Phytate has a different accumulation pattern from protein reserves which are 327
mainly deposited within the numerous protein bodies in seed storage cells (Liu et al., 2004; 328
Liu et al., 2005b). Studies on japonica rice indicated that phytic acid levels were not related to 329
protein levels, which were significantly influenced by genetic and environmental factors 330
(Juliano, 1972; Liu et al., 2005a; Liu et al., 2005b). Our milling experiment indicated that 331
about 25% of the phytic acid is located in the perisperm of the kernel, which differs from 332
earlier findings that phytic acid was only present in the aleurone layer after embryo removal 333
(Liu et al., 2004). This difference suggests that although phytic acid is approximately located 334
in the outer layer of kernel, the precise distribution might differ among rice cultivars. In order 335
to obtain milled rice with minimum weight losses but maximum removal of phytic acid, the 336
distribution of phytic acid in the kernel should be established first, and this should form the 337
basis to determine the appropriate milling treatment. Our X-ray microscope images indicate 338
that in absolute terms, very little phosphorus is located in the embryo itself, which differs 339
from the observation made earlier (Liu et al., 2004) that phosphorus concentration in embryos 340
was about 5 times higher than in whole kernels. Both abrasive milling experiments and X-ray 341
images indicate that Zn was not mainly located in rice bran, unlike total ash or other minerals 342
(Dikeman et al., 1980; Doesthale et al., 1979; Kennedy et al., 2002; Resurreccion et al., 1979). 343
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From our X-ray images, it can be observed that the embryo has the highest concentration of 344
Zn. It however represents a very small fraction of the total grain and in absolute terms, does 345
not contribute very much to the total Zn in milled rice. 346

The different distributions of phytic acid and Zn in rice kernels confirmed earlier 347
statements that phytic acid is primarily present in the potassium or magnesium form instead of 348
the Zn form (Dikeman et al., 1980). Further research is required to assess the effects of other 349
factors such as environmental conditions and agricultural practice, on the distribution of 350
phytic acid and minerals in rice. 351

352

Conclusion353

354
From this study we conclude that milling characteristics, including mass loss and breakage, 355
varied among the rice cultivars having different kernel shapes. This indicates an opportunity 356
for optimized milling, dedicated to improve the quality of white rice. 357

In the cultivars studied, we observed that whereas the distribution of phytic acid 358
differed, most of it was located in the outermost layer. In contrast, Zn distribution in the 3 359
cultivars was quite similar, characterized by an even distribution throughout the kernel with 360
the exception of a higher concentration in the embryo. The results give us the possibility to 361
process brown rice to obtain low phytic acid contents at a relatively high Zn content.362
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Table 1370

371

Cultivar Collection
PC
(g 100g-1)a

Length 
(mm)

RLW
b

KSA
(mm2)c

TKW
(g) d

YBR
(%) e

Breakage 
(%)f

Bijing 37
(Yu et al., 2001)

Guizhou 8.8 5.2 1.8 68 25.5 80.6 3.7

Zhongyou 752 
(Centre of China Crop 
Science and 
Technology, 2006)

Jiangxi 10.9 6.4 2.8 50 26.5 71.9 16.2

Gangwanxian30
(Information of 
Jiangxi foodstuff-oil 
and soil-fertilizer, 
2006)

Jiangxi 8.5 7.6 3.4 52 27.6 73.6 28.0

372
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Table 2373
374

Milling 
time (s)

Bijing 37 Zhongyou 752 Ganwanxian 30

PA* (g kg-1) Zn (mg kg-1) PA (g kg-1)Zn (mg kg-1) PA (g kg-1) Zn (mg kg-1)

0 8.9 ± 0.1a 22.1 ± 0.7a 7.8 ± 0.1a 22.8 ± 1.0a 11.1 ± 0.1a 19.3 ± 4.9a

6 9.0 ± 0.3a 20.8  ± 2.5a 7.6 ± 0.1a 20.7 ± 0.1a 8.1 ± 0.3b 20.3 ± 4.8a

10 8.9 ± 0.2a 20.0  ± 0.6a 7.9 ± 0.2a 22.6 ± 0.3a 7.5 ± 0.3b 20.0 ± 3.6a

20 6.9 ± 0.3b 19.8  ± 0.5a 8.7 ± 0.3a 22.6 ± 0.8a 7.5 ± 0.4b 19.0 ± 2.9a

30 6.5 ± 0.2b 21.7  ± 1.3a 6.8 ± 0.2b 21.5 ± 1.2a 8.0 ± 0.3b 22.7 ± 1.4a

45 6.3 ± 0.2b 22.3  ± 2.6a 6.5 ± 0.3b 18.1 ± 0.8ab 5.9 ± 0.6c 21.9 ± 0.7a

60 4.8 ± 0.1c 21.2 ± 1.3a 6.3 ± 0.5b 17.7 ± 0.9bc 5.3 ± 0.6cd 21.3 ± 2.2a

90 3.1 ± 0.1d 20.1  ± 1.8a 4.7 ± 0.2c 16.3 ± 0.2c 4.9 ± 0.2d 25.8 ± 4.0a

120 2.1 ± 0.1e 15.0  ± 1.0b 3.2 ± 0.4d 16.4 ± 0.2c 3.3 ± 0.1e 20.5 ± 1.1a

180 0.7 ± 0.0f 14.8  ± 0.7b 0.9 ± 0.0e 15.9 ± 0.3c 1.2 ± 0.1f 21.2 ± 0.3a

300 0.2 ± 0.0g 13.7  ± 1.7b 0.1 ± 0.0f 16.7 ± 1.1c 0.2 ± 0.1g 18.5 ± 2.8a

375
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Figure 1a376

377

378

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 50 100 150 200 250 300

milling time (s)

lo
ss

 o
f w

ei
gh

t 
(%

)

Bijing 37 Ganwanxian 30 Zhongyou 752

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

White rice achieved

loss of w
eight (%

)



14

Figure 1b379
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Figure 2a381
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Figure 2c385

386

387

1 mm

P

15 cps

0 cps 

1 mm

Zn
40 cps

0 cps 

0

2

4

6

8

10

12

0 60 120 180 240 300 360

Milling time (s)

Ph
yt

ic
ac

id
 c

on
te

nt
 (

g 
kg

-1
)

0

5

10

15

20

25

30

Z
inc content (m

g kg-1)

contents of phytic acid

Contents of zinc

Brown rice Core of kernelMilled riceSituation of kernel

Molar ratio of PA/Zn 39 24 16

y = -0.0304 x + 7.907      R 2 = 0.9106

Regression of PA (y, %) 
retention to milling time 
(x, s)

Milling time (s) 20 60 120

Mass loss (%) 2.2 6.7 10.5

Loss of PA (%) 33 52 70

Loss of zinc (%) 4 --- 6

300

19.7

99

23

<1

Figure 2c: Distribution of phytic acid and zinc in Ganwanxian 30 



16

Figure 2b383
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TITLES AND LEGENDS FOR TABLES AND FIGURES388

Table 1 General characteristics of brown rice samples  389

a: PC: protein contents (provided by supplier, see reference)390

b: RLW: ratios of length to width (analysed in this study)391

c: KSA: kernel surface area, assumed that the shape of integral kernels were separated into 392
two semi-sphere and a cylinder. Surface area was calculated with 4* (width/2)2 ×  + 0.9 × 393
 × width × length (analysed in this study)394

d: TKW: thousand-kernel weight (provided by supplier, see reference)395

e: YBR: yield of brown rice, on wet mass basis. 396

f: Breakage caused by dehulling: percentage of broken brown rice weight to total brown rice 397
weight (analysed in this study)398

399

Table 2 Contents of phytic acid and zinc in milled rice*400

* All data are based on dry mass weight and are presented as average ± standard deviations 401
(n=3). Within columns, different superscripts indicate significant differences (P < 0.05, two-402
tailed t-test).403

404

Figure 1a Mass loss during milling405

406

Figure 1b Breakage during milling407

408

Figure 2a Distribution of phytic acid and Zn in Bijing 37 (short-grain)409

Figure 2b Distribution of phytic acid and Zn in Zhongyou 752 (medium-grain)410

Figure 2c Distribution of phytic acid and Zn in Ganwanxian 30 (long-grain)411

412
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