(Shortened) Thermal instability of partially ionized plasma is investigated
by linear perturbation analysis. According to the previous studies under the
one fluid approach, the thermal instability is suppressed due to the magnetic
pressure. However, the previous studies did not precisely consider the effect
of the ion-neutral friction, since they did not treat the flow as two fluid
which is composed of ions and neutrals. Then, we revisit the effect of the
ion-neutral friction of the two fluid to the growth of the thermal instability.
According to our study, (1) The instability which is characterized by the mean
molecular weight of neutrals is suppressed via the ion-neutral friction only
when the magnetic field and the friction are sufficiently strong. The
suppression owing to the friction occurs even along the field line. If the
magnetic field and the friction are not so strong, the instability is not
stabilized. (2) The effect of the friction and the magnetic field is mainly
reduction of the growth rate of the thermal instability of weakly ionized
plasma. (3) The effect of friction does not affect the critical wavelength
lambdaF for the thermal instability. This yields that lambdaF of the weakly
ionized plasma is not enlarged even when the magnetic field exists. We insist
that the thermal instability of the weakly ionized plasma in the magnetic field
can grow up even at the small length scale where the instability under the
assumption of the one fluid plasma can not grow owing to the stabilization by
the magnetic field. (4) The wavelength of the maximum growth rate of the
instability shifts shortward according to the decrement of the growth rate,
because the friction is effective at rather larger scale. Therefore, smaller
structures are expected to appear than those without the ion-neutral friction.Comment: To appear in Ap