15 research outputs found

    Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype

    Get PDF
    Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16 INK4a, a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders.Matsudaira T., Nakano S., Konishi Y., et al. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Communications Biology 6, 665 (2023); https://doi.org/10.1038/s42003-023-05027-2

    Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype

    No full text
    Abstract Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16 INK4a , a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders

    Correlation of <i>UGT1A1</i> Gene Polymorphisms or Prior Irinotecan Treatment and Treatment Outcomes of Nanoliposomal-Irinotecan plus 5-Fluorouracil/Leucovorin for Pancreatic Ductal Adenocarcinoma: A Multicenter, Retrospective Cohort Study (HGCSG2101)

    No full text
    The effects of UGT1A1 gene polymorphisms or prior irinotecan treatment on treatment outcomes of nanoliposomal-irinotecan plus 5-fluorouracil/leucovorin (nal-IRI+5-FU/LV) in patients with unresectable pancreatic ductal adenocarcinoma (PDAC) are not established. This multicenter, retrospective cohort study compared treatment outcomes in patients with UGT1A1*1/*1 and those with UGT1A1*1/*6 or *1/*28 genotypes. We also analyzed the impact of prior irinotecan treatment on survival outcomes in 54 patients treated with nal-IRI+5-FU/LV. Comparable effectiveness was found regardless of the UGT1A1 genotypes. While no significant differences were found, grade ≥3 neutropenia and febrile neutropenia were more frequent in patients with UGT1A1*1/*6 or *1/*28 than in those with UGT1A1*1/*1 genotypes (grade ≥3 neutropenia, 50.0% vs. 30.8%, p = 0.24; febrile neutropenia, 9.1% vs. 0.0%, p = 0.20, respectively). No significant difference in progression-free survival (PFS) and overall survival (OS) was observed between irinotecan-naïve-patients and other patients. However, irinotecan-resistant patients showed significantly shorter PFS (hazard ratio (HR) 2.83, p = 0.017) and OS (HR 2.58, p = 0.033) than other patients. Our study indicated that patients with UGT1A1*1/*6 or *1/*28 may be prone to neutropenia, though further study is needed. The survival benefit of nal-IRI+5-FU/LV could be maintained in patients without disease progression after irinotecan therapy

    Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties

    No full text
    Tumor-associated macrophages affect tumor progression and resistance to immune checkpoint therapy. Here, we identify the chemokine signal regulator FROUNT as a target to control tumor-associated macrophages. The low level FROUNT expression in patients with cancer correlates with better clinical outcomes. Frount-deficiency markedly reduces tumor progression and decreases macrophage tumor-promoting activity. FROUNT is highly expressed in macrophages, and its myeloid-specific deletion impairs tumor growth. Further, the anti-alcoholism drug disulfiram (DSF) acts as a potent inhibitor of FROUNT. DSF interferes with FROUNT-chemokine receptor interactions via direct binding to a specific site of the chemokine receptor-binding domain of FROUNT, leading to inhibition of macrophage responses. DSF monotherapy reduces tumor progression and decreases macrophage tumor-promoting activity, as seen in the case of Frount-deficiency. Moreover, co-treatment with DSF and an immune checkpoint antibody synergistically inhibits tumor growth. Thus, inhibition of FROUNT by DSF represents a promising strategy for macrophage-targeted cancer therapy
    corecore