117 research outputs found

    Contacts between the commissural axons and the floor plate cells are mediated by nectins

    Get PDF
    AbstractDuring development of the central nervous system (CNS), commissural axons grow toward the ventral midline. After crossing the floor plate, they abruptly change their trajectory from the circumferential to the longitudinal axis. The contacts between the commissural axons and the floor plate cells are involved in this axonal guidance, but their mechanisms or structures have not fully been understood. In this study, we found that nectin-1 and -3, immunoglobulin-like cell–cell adhesion molecules, asymmetrically localized at the contact sites between the commissural axons and the floor plate cells, respectively. In vitro perturbation of the endogenous trans-interaction between nectin-1 and -3 caused abnormal fasciculation of the commissural axons and impairment of the contacts, and resulted in failure in longitudinal turns of the commissural axons at the contralateral sites of the rat hindbrain. These results indicate that the contacts between the commissural axons and the floor plate cells are mediated by the hetero-trans-interaction between nectin-1 and -3 and involved in regulation of the trajectory of the commissural axons

    An exploratory study for tuft cells in the breast and their relevance in triple-negative breast cancer: the possible relationship of SOX9

    Get PDF
    BACKGROUND: Breast cancer is highly heterogeneous, suggesting that small but relevant subsets have been under-recognized. Rare and mainly triple-negative breast cancers (TNBCs) were recently found to exhibit tuft cell-like expression profiles, including POU2F3, the tuft cell master regulator. In addition, immunohistochemistry (IHC) has identified POU2F3-positive cells in the normal human breast, suggesting the presence of tuft cells in this organ. METHODS: Here, we (i) reviewed previously identified POU2F3-positive invasive breast cancers (n = 4) for POU2F3 expression in intraductal cancer components, (ii) investigated a new cohort of invasive breast cancers (n = 1853) by POU2F3-IHC, (iii) explored POU2F3-expressing cells in non-neoplastic breast tissues obtained from women with or without BRCA1 mutations (n = 15), and (iv) reanalyzed publicly available single-cell RNA sequencing (scRNA-seq) data from normal breast cells. RESULTS: Two TNBCs of the four previously reported invasive POU2F3-positive breast cancers contained POU2F3-positive ductal carcinoma in situ (DCIS). In the new cohort of invasive breast cancers, IHC revealed four POU2F3-positive cases, two of which were triple-negative, one luminal-type, and one triple-positive. In addition, another new POU2F3-positive tumor with a triple-negative phenotype was found in daily practice. All non-neoplastic breast tissues contained POU2F3-positive cells, irrespective of BRCA1 status. The scRNA-seq reanalysis confirmed POU2F3-expressing epithelial cells (3.3% of all epithelial cells) and the 17% that co-expressed the other two tuft cell-related markers (SOX9/AVIL or SOX9/GFI1B), which suggested they were bona fide tuft cells. Of note, SOX9 is also known as the "master regulator" of TNBCs. CONCLUSIONS: POU2F3 expression defines small subsets in various breast cancer subtypes, which can be accompanied by DCIS. The mechanistic relationship between POU2F3 and SOX9 in the breast warrants further analysis to enhance our understanding of normal breast physiology and to clarify the significance of the tuft cell-like phenotype for TNBCs

    Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1

    Get PDF
    The cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitter. We have identified here a novel CAZ protein of ∼120 kD from rat brain and named it CAST (CAZ-associated structural protein). CAST had no transmembrane segment, but had four coiled-coil domains and a putative COOH-terminal consensus motif for binding to PDZ domains. CAST was localized at the CAZ of conventional synapses of mouse brain. CAST bound directly RIM1 and indirectly Munc13-1, presumably through RIM1, forming a ternary complex. RIM1 and Munc13-1 are CAZ proteins implicated in Ca2+-dependent exocytosis of neurotansmitters. Bassoon, another CAZ protein, was also associated with this ternary complex. These results suggest that a network of protein–protein interactions among the CAZ proteins exists at the CAZ. At the early stages of synapse formation, CAST was expressed and partly colocalized with bassoon in the axon shaft and the growth cone. The vesicles immunoisolated by antibassoon antibody–coupled beads contained not only bassoon but also CAST and RIM1. These results suggest that these CAZ proteins are at least partly transported on the same vesicles during synapse formation

    Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases

    Get PDF
    Aims The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. Methods and Results We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands. Conclusions Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD. Translational Perspective Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD

    Improvement in Performance of Parallel Garbage Collector

    Get PDF
    スナップショット型(snapshot-at-beginning)と分類されるタイプの並列GCは, 無停止処理に向くが, ゴミの回収効率が悪い。筆者らは1982年以来このタイプの並列GCの効率の改善に取り組んできた。この成果が部分印づけ法と相補型GCという二つの方法である。本論文ではその研究の集大成として, スナップショット型の並列GCの問題点を解説し, この二つの方法について概説する。また, GC効率の測定法やCommon Lispを基にしたシステムへの応用例も報告する。A class of parallel garbage collectors called snapshot-at-beginning collectors have preferable properties such as predictable pause time and ease of implementation. However, these collectors had been known to be inefficient in terms of collection perform

    Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan

    Get PDF
    金沢大学医学系研究科Aim: Familial hypercholesterolemia (FH) is caused by mutations of FH genes, i.e. LDL-receptor (LDLR), PCSK9 and apolipoprotein B (ApoB) gene. We evaluated the usefulness of DNA analysis for the diagnosis of homozygous FH (homo-FH), and studied the frequency of FH in the Hokuriku district of Japan. Methods: Twenty-five homo-FH patients were recruited. LDLR mutations were identified using the Invader assay method. Mutations in PCSK9 were detected by PCR-SSCP followed by direct sequence analysis. Results: We confirmed 15 true homozygotes and 10 compound heterozygotes for LDLR mutations. Three types of double heterozygotes for LDLR and PCSK9 were found. No FH patients due to ApoB mutations were found. The incidences of homo-FH and hetero-FH in the Hokuriku district were 1/171,167 and 1/208, respectively. Conclusions: Our observations underlined the value of FH gene analysis in diagnosing homo-FH and confirmed extraordinarily high frequency of FH in the Hokuriku district of Japan. © 2010 Elsevier Ireland Ltd

    Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations

    Get PDF
    Background & Aims Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. Methods We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. Results We identified 32 significantly and commonly mutated genes including TP53 , KRAS , SMAD4 , NF1 , ARID1A , PBRM1 , and ATR , some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1 , BRCA2 , RAD51D , MLH1 , or MSH2 were detected in 11% (16/146) of BTC patients. Conclusions BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. Lay summary We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1 . Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition
    corecore