197 research outputs found

    Simulating the redox potentials of unexplored phenazine derivatives as electron mediators for biofuel cells

    Get PDF
    In this research, we aimed to establish a guideline for designing electron mediators suitable for biofuel cells. A redox potential simulator was fabricated by combining density functional theory calculation and experiment, allowing us to select molecules with appropriate redox potentials efficiently. Previously, mediators have been developed depending on the trials and errors; thus, our strategy will speed up the development of biofuel cells with outstanding performances

    Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst

    Get PDF
    Dependence of shape selectivity for para-xylene production by toluene disproportionation on conditions of chemical vapor deposition (CVD) of tetramethoxysilane on MFI (ZSM-5) zeolite were investigated in detail. The CVD after pelletization was necessary to obtain 0.7–1 mm particles with high selectivity. The influences of preparation conditions on the selectivity were investigated in detail to find the optimum conditions. The parent zeolite with small number of Brønsted acid sites on the external surface brought the high selectivity after the CVD. The catalyst prepared in the optimized conditions showed the selectivity 99.7% at ca. 10% of the toluene conversion

    Obliquity of an Earth-like planet from frequency modulation of its direct imaged lightcurve: mock analysis from general circulation model simulation

    Full text link
    Direct-imaging techniques of exoplanets have made significant progress recently, and will eventually enable to monitor photometric and spectroscopic signals of earth-like habitable planets in the future. The presence of clouds, however, would remain as one of the most uncertain components in deciphering such direct-imaged signals of planets. We attempt to examine how the planetary obliquity produce different cloud patterns by performing a series of GCM (General Circulation Model) simulation runs using a set of parameters relevant for our Earth. Then we use the simulated photometric lightcurves to compute their frequency modulation due to the planetary spin-orbit coupling over an entire orbital period, and attempt to see to what extent one can estimate the obliquity of an Earth-twin. We find that it is possible to estimate the obliquity of an Earth-twin within the uncertainty of several degrees with a dedicated 4 m space telescope at 10 pc away from the system if the stellar flux is completely blocked. While our conclusion is based on several idealized assumptions, a frequency modulation of a directly-imaged earth-like planet offers a unique methodology to determine its obliquity.Comment: 29 pages, 18 figures, accepted for publication in Ap

    Isolation and Structural Determination of the First 8-epi-type Tetrodotoxin Analogs from the Newt, Cynops ensicauda popei, and Comparison of Tetrodotoxin Analogs Profiles of This Newt and the Puffer Fish, Fugu poecilonotus

    Get PDF
    Identification of new tetrodotoxin (TTX) analogs from TTX-possessing animals might provide insight into its biosynthesis and metabolism. In this study, four new analogs, 8-epi-5,6,11-trideoxyTTX, 4,9-anhydro-8-epi-5,6,11-trideoxyTTX, 1-hydroxy-8-epi-5,6,11-trideoxyTTX, and 1-hydroxy-4,4a-anhydro-8-epi-5,6,11-trideoxyTTX, were isolated from the newt, Cynops ensicauda popei, and their structures were determined using spectroscopic methods. These are the first 8-epi-type analogs of TTX that have been found in a natural source. Furthermore, we examined the composition of the TTX analogs in this newt and in the ovary of the puffer fish, Fugu poecilonotus, using LC/MS. The results indicate that TTX and 11-deoxyTTX were present in both sources. However, 6-epiTTX and 8-epi-type analogs were detected only in the newt, while 5,6,11-trideoxyTTX was a specific and major analog in the puffer fish. Such considerable differences among analog compositions might reflect differences in the biosynthesis or metabolism of TTX between these animals

    Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design

    Full text link
    Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano-micro-macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 ω cm) to quasimetallic (10-2 ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.Koga H., Nagashima K., Suematsu K., et al. Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design. ACS Nano, 16(6), 8630-8640, 2022. https://doi.org/10.1021/acsnano.1c10728

    Detection of the thermal component in GRB 160107A

    Get PDF
    We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ∼45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0 +0.3-0.2 keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism
    corecore