10,128 research outputs found

    Increased tolerance to humans among disturbed wildlife.

    Get PDF
    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds

    Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror

    Get PDF
    We calculate the thermal noise in half-infinite mirrors containing a layer of arbitrary thickness and depth made of excessively lossy material but with the same elastic material properties as the substrate. For the special case of a thin lossy layer on the surface of the mirror, the excess noise scales as the ratio of the coating loss to the substrate loss and as the ratio of the coating thickness to the laser beam spot size. Assuming a silica substrate with a loss function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot size and a 7 micrometers thick coating to avoid increasing the spectral density of displacement noise by more than 10%. A similar number is obtained for sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001) Replacement: Minor typo in Eq. 17 correcte

    Lubrication effects on the flow of wet granular materials

    Full text link
    We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continous avalanching regime and measure the impact of volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minima occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the timescale over which particles come in contact.Comment: 7 pages, 8 figure

    Dust Size Growth and Settling in a Protoplanetary Disk

    Full text link
    We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2x10^3 - 4x10^4 yr at 1 - 30 AU, which is in good agreement with an analytic calculation by Nakagawa, Sekiya, & Hayashi (1986) although they did not take into account the particle size distribution explicitly. In an opposite extreme case of a globally turbulent disk, on the other hand, the dust particles fluctuate owing to turbulent motion of the gas and most particles become large enough to move inward very rapidly within 70 - 3x10^4 yr at 1 - 30 AU, depending on the strength of turbulence. Our result suggests that global turbulent motion should cease for the planetesimal formation in protoplanetary disks.Comment: 27 pages, 8 figures, accepted for publication in the Ap

    Experimental evidence of shock mitigation in a Hertzian tapered chain

    Full text link
    We present an experimental study of the mechanical impulse propagation through a horizontal alignment of elastic spheres of progressively decreasing diameter ϕn\phi_n, namely a tapered chain. Experimentally, the diameters of spheres which interact via the Hertz potential are selected to keep as close as possible to an exponential decrease, ϕn+1=(1q)ϕn\phi_{n+1}=(1-q)\phi_n, where the experimental tapering factor is either q15.60q_1\simeq5.60~% or q28.27q_2\simeq8.27~%. In agreement with recent numerical results, an impulse initiated in a monodisperse chain (a chain of identical beads) propagates without shape changes, and progressively transfer its energy and momentum to a propagating tail when it further travels in a tapered chain. As a result, the front pulse of this wave decreases in amplitude and accelerates. Both effects are satisfactorily described by the hard spheres approximation, and basically, the shock mitigation is due to partial transmissions, from one bead to the next, of momentum and energy of the front pulse. In addition when small dissipation is included, a better agreement with experiments is found. A close analysis of the loading part of the experimental pulses demonstrates that the front wave adopts itself a self similar solution as it propagates in the tapered chain. Finally, our results corroborate the capability of these chains to thermalize propagating impulses and thereby act as shock absorbing devices.Comment: ReVTeX, 7 pages with 6 eps, accepted for Phys. Rev. E (Related papers on http://www.supmeca.fr/perso/jobs/

    Assessment of the Potential Impact and Cost-effectiveness of Self-Testing for HIV in Low-Income Countries.

    Get PDF
    Studies have demonstrated that self-testing for human immunodeficiency virus (HIV) is highly acceptable among individuals and could allow cost savings, compared with provider-delivered HIV testing and counseling (PHTC), although the longer-term population-level effects are uncertain. We evaluated the cost-effectiveness of introducing self-testing in 2015 over a 20-year time frame in a country such as Zimbabwe

    Investigation of the effects of notch width on eddy current response and comparison of signals from notches and cracks

    Get PDF
    This paper reports on work conducted to investigate the effect that electrical discharge machining (EDM) notch width has on the eddy current (EC) signal as a function of coil drive frequency. The notch results are also compared to EC signals from laboratory‐grown fatigue cracks. This study builds upon previous work with titanium, Inconel and aluminum materials where the signal amplitude was shown to decrease, as expected, as the notch width decreases. The trend was captured well by numerical results and this allowed estimates to be made about the signals from idealized “zero‐width” notches. The results indicated that the signal reduction factor from a 0.127 mm (0.005 inch) wide, rectangular notch to a theoretical zero‐width semi‐elliptical notch of the same size ranged from 25 to 42% for low conductivity materials when data was collected at 2 MHz. For aluminum, the difference between signals from 0.127 mm wide notches and estimated signals for zero‐width notches was approximately 50%. However, 2 MHz is an uncommonly high frequency for inspecting aluminum alloys so additional work was necessary to investigate the notch width effect at lower frequencies. This study sought to determine how the notch‐width effect changed as a function of frequency for high conductivity materials such as aluminum

    [CII] emission and star formation in the spiral arms of M31

    Full text link
    The CII 158 microns line is the most important coolant of the interstellar medium in galaxies but substantial variations are seen from object to object. The main source of the emission at a galactic scale is still poorly understood. Previous studies of the CII emission in galaxies have a resolution of several kpc or more so the observed emission is an average of different ISM components. The aim of this work is to study, for the first time, the CII emission at the scale of a spiral arm. We want to investigate the origin of this line and its use as a tracer of star formation. We present CII and OI observations of a segment of a spiral arm of M~31 using the Infrared Space Observatory. The CII emission is compared with tracers of neutral gas (CO, HI) and star formation (H\alpha, Spitzer 24 mu.) The similarity of the CII emission with the Ha and 24 mu images is striking when smoothed to the same resolution, whereas the correlation with the neutral gas is much weaker. The CII cooling rate per H atom increases dramatically from ~2.7e-26 ergs/s/atom in the border of the map to ~ 1.4e-25 ergs/s/atom in the regions of star formation. The CII/FIR(42-122) ratio is almost constant at 2%, a factor 3 higher than typically quoted. However, we do not believe that M~31 is unusual. Rather, the whole-galaxy fluxes used for the comparisons include the central regions where the CII/FIR ratio is known to be lower and the resolved observations neither isolate a spiral arm nor include data as far out in the galactic disk as the observations presented here. A fit to published PDR models yields a plausible average solution of G_0~100 and n~3000 for the PDR emission in the regions of star formation in the arm of M31.Comment: 8 pages, 5 figures. To be published by A&A. Low quality figures. High quality version in http://www.obs.u-bordeaux1.fr/Radio/NRodriguez/out/m31.pd
    corecore