5 research outputs found

    A comparative patient-level prediction study in OMOP CDM: applicative potential and insights from synthetic data

    No full text
    Abstract The emergence of collaborations, which standardize and combine multiple clinical databases across different regions, provide a wealthy source of data, which is fundamental for clinical prediction models, such as patient-level predictions. With the aid of such large data pools, researchers are able to develop clinical prediction models for improved disease classification, risk assessment, and beyond. To fully utilize this potential, Machine Learning (ML) methods are commonly required to process these large amounts of data on disease-specific patient cohorts. As a consequence, the Observational Health Data Sciences and Informatics (OHDSI) collaborative develops a framework to facilitate the application of ML models for these standardized patient datasets by using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). In this study, we compare the feasibility of current web-based OHDSI approaches, namely ATLAS and “Patient-level Prediction” (PLP), against a native solution (R based) to conduct such ML-based patient-level prediction analyses in OMOP. This will enable potential users to select the most suitable approach for their investigation. Each of the applied ML solutions was individually utilized to solve the same patient-level prediction task. Both approaches went through an exemplary benchmarking analysis to assess the weaknesses and strengths of the PLP R-Package. In this work, the performance of this package was subsequently compared versus the commonly used native R-package called Machine Learning in R 3 (mlr3), and its sub-packages. The approaches were evaluated on performance, execution time, and ease of model implementation. The results show that the PLP package has shorter execution times, which indicates great scalability, as well as intuitive code implementation, and numerous possibilities for visualization. However, limitations in comparison to native packages were depicted in the implementation of specific ML classifiers (e.g., Lasso), which may result in a decreased performance for real-world prediction problems. The findings here contribute to the overall effort of developing ML-based prediction models on a clinical scale and provide a snapshot for future studies that explicitly aim to develop patient-level prediction models in OMOP CDM

    OMOP CDM Can Facilitate Data-Driven Studies for Cancer Prediction: A Systematic Review

    Get PDF
    The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a highthroughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery

    OMOP CDM Can Facilitate Data-Driven Studies for Cancer Prediction: A Systematic Review

    No full text
    The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a high-throughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery

    Methods used in the development of Common Data Models for health data – A Scoping Review Protocol

    No full text
    Common Data Models (CDMs) are essential tools for data harmonization, which can lead to significant improvements in healthcare. CDMs harmonize data from disparate sources and eases collaborations across institutions which lead to generation of larger standardized data repositories across different entities. This Scoping Review (Sc-R) on methods used in the development of CDMs for healthcare aims to obtain a broad overview of approaches that are used in developing CDMs, i.e., Common Data Elements (CDEs) or Common Data Sets (CDS) for different disease domains on an international level. To get an overview of the state-of-the-art literature databases, namely PubMed, Web of Science, Science Direct, and Scopus are searched for five-year publications, starting from 2017, with associated keywords. The included articles will be evaluated methodically and a list of different types of methods will be created. The methods will then be categorized into groups

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore