33 research outputs found

    The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role?

    Get PDF
    COVID-19 is a new viral illness that can affect the lungs and airways with lethal consequences leading to the death of the patients. The ACE2 receptors were widely disturbed among body tissues such as lung, kidney, small intestine, heart, and others in different percent and considered a target for the nCOVID-19 virus. S-protein of the virus was binding to ACE2 receptors caused downregulation of endogenous anti-viral mediators, upregulation of NF-ÎșB pathway, ROS and pro-apoptotic protein. Nrf2 was a transcription factor that's play a role in generation of anti-oxidant enzymes. To describe and establish role of Nrf2 activators for treatment COVID-19 positive patients. We used method of analysis of the published papers with described studies about COVID-19 connected with pharmacological issues and aspects which are included in global fighting against COVID-19 infection, and how using DMF (Nrf2 activator) in clinical trial for nCOVID-19 produce positive effects in patients for reduce lung alveolar cells damage. we are found that Nrf2 activators an important medication that's have a role in reduce viral pathogenesis via inhibit virus entry through induce SPLI gene expression as well as inhibit TRMPSS2, upregulation of ACE2 that's make a competition with the virus on binding site, induce gene expression of anti-viral mediators such as RIG-1 and INFs, induce anti-oxidant enzymes, also they have a role in inhibit NF-ÎșB pathway, inhibit both apoptosis proteins and gene expression of TLRs. We are concluded that use DMF (Nrf2 activator) in clinical trial for nCOVID-19 positive patients to reduce lung alveolar cells damage. [Abstract copyright: © 2020 Saif M Hassan, Mahmood J Jawad, Salam W. Ahjel, Ram B. Singh, Jaipaul Singh4, Samir Mohamed Awad, Najah R Hadi.

    Role of ARBs and ACEIs in the treatment of SARS-COV2

    Get PDF
    The coronavirus 2 (SARS‐CoV‐2) induces severe acute respiratory distress syndrome (ARDS)via the coronavirus receptor angiotensin‐converting enzyme 2 (ACE2) in the host cell to facilitate entry into the lungs Over activation of the renin‐angiotensin system (RAS) and the down regulation of ACE2 expression are involved in SARS‐CoV induced lung injury. RAS is the main system that has a regulatory roleinmaintaining electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling in the body. Angiotensin II receptor blockers (ARBs) and Inhibitors (ACEIs) are vital medications that are widely used for the treatment of cardiovascular diseases (CVDs). The question which now arises is: It is possible to continue using either ARBs or ACEIsor both medications in patients with SARS-CoV2? Both ARBs and ACEIs can facilitate COVID-19 entry into the host cell due to increase expression of ACE2. On the other hand, ARBs have a greater potential to reduce downstream pathogenicity of the SARS-CoV2 via different cell signaling pathways including free radical generation, up regulation of NF-ÎșB pathway, toll-like receptors (TLRs) and pro-apoptotic protein by blocking the renin–angiotensin system more severely compared to the effect of ACEIs. The current hypothesis is that ARBs can perform better therapeutically compared to ACEIs in respiratory disorders such as ARDS which is induced by viral infection especially since more than 40 % of angiotensin II can be synthesized by other enzymes such as chymase, cathepsin. ARBs treatment can increase the levels of both angiotensin II (Ang II) and the ACE2 enzyme making Ang II a target substrate for hydrolysis by ACE2 into Ang 1-7 which in turn exerts anti-inflammatory, anti-apoptotic and anti-oxidant activities. These effects are achieved by the binding of Ang 1-7 to both angiotensin-type 2 receptor (AT2) and receptor mas’ axis (Mas) and also by its ability to block Ang II/AT1 receptor-induced TLR4/MyD88 signaling thereby highlighting the potential therapeutic use of ARB sin preventing injury induced by COVID-19 virus. It is concluded that patients who are already on ARBs medications must continue to use them daily since ARBs have protective effects against COVID-19 virus. Moreover, ARB sexert their beneficial effects via their anti-inflammatory, anti-apoptotic, anti-oxidant and anti-fibrotic properties. On the other hand, those patients who are on ACEIs medications must change to other safe drugs since ACEIs can facilitate an increase in COVID-19 virus entry into the body as well as reducing levels and protecting effect of Ang 1-7

    Antimicrobial effect of Red Roselle (Hibiscus Sabdariffa) against different types of oral bacteria

    Get PDF
    This study aimed to compare the antimicrobial effect of an aqueous extract Red Roselle calyx (RE), Chlorhexidine (CH), Amoxicillin-clavulanic acid (ACA), Tetracycline (Tet), and Metronidazole (Met)on Streptococcus mutans (S. mutans), Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) bacteria. The bacterial inhibition zones (BIZ)of the RE (25, 50, 75, 100) mg/ml and CH solutions (0.2%, 2%) were determined using the agar well diffusion method. Additionally, the susceptibility of the tested bacteria against (30 ”g) of standard antibiotics of ACA, Tet, and Met was examined. The bacterial minimum inhibitory concentration (MIC) was measured using the Broth Micro dilution method (BMDM). All tests were carried out in triplicates, and water was considered the negative control. For S. mutans, the RE at 50 mg/ml or above concentrations displayed higher BIZ than 0.2% CH. 100 mg/ml of RE recorded a greater BIZ than the 2% CH. The greater BIZ against S. mutans was recorded by Tet. A comparable effect was found with 0.2% CH (75, 100) mg/ml of the RE against S. aureus. Greater BIZ for S. aureus and E. faecalis were reported for 100 mg/ml RE compared to the Tet and Met RE at 100 mg/ml inhibited the E. faecalis growth in a zone size comparable to the CH (0.2%, 2%).The RE with 50,100 mg/ml concentrations showed comparable antimicrobial effect to 0.2%, 2% concentrations of CH, respectively. As an herbal substitute for commercial disinfectants, the RE can be considered an effective final endodontic irrigant and dental mouthwash

    Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p

    Global burden of peripheral artery disease and its risk factors, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    peripheral artery disease were modelled using the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2019 database. Prevalence, disability-adjusted life years (DALYs), and mortality estimates of peripheral artery disease were extracted from GBD 2019. Total DALYs and age-standardised DALY rate of peripheral artery disease attributed to modifiable risk factors were also assessed. Findings In 2019, the number of people aged 40 years and older with peripheral artery disease was 113 million (95% uncertainty interval [UI] 99·2–128·4), with a global prevalence of 1·52% (95% UI 1·33–1·72), of which 42·6% was in countries with low to middle Socio-demographic Index (SDI). The global prevalence of peripheral artery disease was higher in older people, (14·91% [12·41–17·87] in those aged 80–84 years), and was generally higher in females than in males. Globally, the total number of DALYs attributable to modifiable risk factors in 2019 accounted for 69·4% (64·2–74·3) of total peripheral artery disease DALYs. The prevalence of peripheral artery disease was highest in countries with high SDI and lowest in countries with low SDI, whereas DALY and mortality rates showed U-shaped curves, with the highest burden in the high and low SDI quintiles. Interpretation The total number of people with peripheral artery disease has increased globally from 1990 to 2019. Despite the lower prevalence of peripheral artery disease in males and low-income countries, these groups showed similar DALY rates to females and higher-income countries, highlighting disproportionate burden in these groups. Modifiable risk factors were responsible for around 70% of the global peripheral artery disease burden. Public measures could mitigate the burden of peripheral artery disease by modifying risk factors

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Effects of thyroid hormone analogue and a leukotrienes pathway-blocker on renal ischemia/reperfusion injury in mice

    Get PDF
    BACKGROUND: Acute renal failure (ARF) is an important clinical problem with a high mortality and morbidity. One of the primary causes of ARF is ischemia/reperfusion (I/R). Inflammatory process and oxidative stress are thought to be the major mechanisms causing I/R. MK-886 is a potent inhibitor of leukotrienes biosynthesis which may have anti-inflammatory and antioxidant effects through inhibition of polymorphonuclear leukocytes (PMNs) infiltration into renal tissues. 3, 5-diiodothyropropionic acid (DITPA) have evidences of improving effects on I/R in heart through modulation of cellular signaling in response to ischemic stress. The objective of present study was to assess the effects of MK-886 and DITPA on renal I/R injury. METHODS: A total of 24 Adult males of Swiss albino mice were randomized to four groups: I/R group (n = 6), mice underwent 30 minute bilateral renal ischemia and 48 hr reperfusion. Sham group (n = 6), mice underwent same anesthetic and surgical procedures except for ischemia induction. MK-886-treated group: (n = 6), I/R + MK-886 (6 mg/kg) by intraperitoneal injection. DITPA-treated group: (n = 6), I/R + DITPA (3.75 mg/kg) by intraperitoneal injection. After the end of reperfusion phase mice were sacrificed, blood samples were collected directly from the heart for determination of serum TNF-a, IL-6, urea and Creatinine. Both kidney were excised, the right one homogenized for oxidative stress parameters (MDA and GSH) measurements and the left kidney fixed in formalin for histological examination. RESULTS: Serum TNF-α, IL-6, urea and Creatinine, kidney MDA levels and scores of histopathological changes were significantly (P < 0.05) elevated in I/R group as compared with that of sham group. Kidney GSH level was significantly (P < 0.05) decreased in I/R group as compared with that of sham group. MK-886 treated group has significantly (P < 0.05) lowered levels of all study parameters except for GSH level which was significantly (P < 0.05) higher as compared with that of I/R group. DITPA caused non-significant (P > 0.05) changes in levels of all study parameters as compared with that of I/R group. CONCLUSION: The results of the present study show that MK-886 significantly ameliorated kidney damage that resulted from I/R. For DITPA, as its administration might not be successful, administration using a different protocol may give different effects on I/R
    corecore