666 research outputs found

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Preliminary Considerations from the 2nd Phase of Experiments at the SIET/SWAM Facility

    Get PDF
    Severe accident codes study the thermo-hydraulics of the suppression chamber with a limited numbers of nodes, generally solving mass and energy equations and assuming perfect mixing conditions. In a long station black out the effect of the sparger’s design might create local phenomena (e.g. stratification, hot-spots) which are hardly predicted by the current practices, resulting in mispredictions of the containment pressure evolution. In order to understand the effect of the sparger geometry, steam mass flux, water sub-cooling and air concentration the SWAM facility (Steam Water Air Mixing) at the SIET laboratory was employed performing around twenty different experiments, in conditions close to what is expected during the Fukushima Daiichi accident. The test facility (poll and pipes) is built with polycarbonate (transparent material) to ease the acquisition of the standard and high-speed cameras. Vertically distributed thermocouples and high-frequency pressure measurements are employed to obtain quantitative values for phenomena investigation and future CFD validations. It was shown that experiments with pure steam and relatively large diameter holes induce chugging that enhances mixing in the pool. Once chugging ceases, because of the reduced sub-cooling, a hot water layer is created in the upper part of the pool. The presence of air in the pipe induces large stratification from the condition of large subcooling because of the limited mixing introduced in the region below the pipe mouth

    High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    Full text link
    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic\textregistered - a trademark of ECM, in the temperature region of \sim310-10K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic\textregistered is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1{\sigma}) in the range 293-10K derived from the data for the XY- and Z-directions were 0.805±\pm0.003\times10−6^{-6} K−1^{-1} and 0.837\pm0.001\times10−6^{-6} K−1^{-1}, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01\times10−6^{-6} K−1^{-1} and 0.001\times(10)^{-6} K^{-1}, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.Comment: Accepted by Cryogeincs. 12 pages, 3 figures, 1 tabll

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of ∼\sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review

    Relaxation of classical many-body hamiltonians in one dimension

    Full text link
    The relaxation of Fourier modes of hamiltonian chains close to equilibrium is studied in the framework of a simple mode-coupling theory. Explicit estimates of the dependence of relevant time scales on the energy density (or temperature) and on the wavenumber of the initial excitation are given. They are in agreement with previous numerical findings on the approach to equilibrium and turn out to be also useful in the qualitative interpretation of them. The theory is compared with molecular dynamics results in the case of the quartic Fermi-Pasta-Ulam potential.Comment: 9 pag. 6 figs. To appear in Phys.Rev.

    Generalized Boltzmann Equation for Lattice Gas Automata

    Full text link
    In this paper, for the first time a theory is formulated that predicts velocity and spatial correlations between occupation numbers that occur in lattice gas automata violating semi-detailed balance. Starting from a coupled BBGKY hierarchy for the nn-particle distribution functions, cluster expansion techniques are used to derive approximate kinetic equations. In zeroth approximation the standard nonlinear Boltzmann equation is obtained; the next approximation yields the ring kinetic equation, similar to that for hard sphere systems, describing the time evolution of pair correlations. As a quantitative test we calculate equal time correlation functions in equilibrium for two models that violate semi-detailed balance. One is a model of interacting random walkers on a line, the other one is a two-dimensional fluid type model on a triangular lattice. The numerical predictions agree very well with computer simulations.Comment: 31 pages LaTeX, 12 uuencoded tar-compressed Encapsulated PostScript figures (`psfig' macro), hardcopies available on request, 78kb + 52k

    The comparative anatomy of the folds, fossae, and adhesions around the duodenojejunal flexure in mammals

    Get PDF
    Background: Anatomical knowledge of the duodenojejunal flexure is necessary for abdominal surgeries, and also important for physiologic studies about the duodenum. But little is known about the anatomy of this region in mammals. Here, we examined comparative anatomy to understand the anatomical formation of the duodenojejunal flexure in mammals. Materials and methods: The areas around the duonenojejunal flexure were ob­served in mouse, rat, dog, pig, and human, and the anatomical structures around the duodenojejunal junction in the animals were compared with those in human. Results: The superior and inferior duodenal folds, and the superior and inferior duodenal fossae were identified in all examined humans. In pig, the structures were not clearly identified because the duodenum strongly adhered to the retroperitoneum and to the mesocolon. In mouse, rat, and dog, only the plica duodenocolica, which is regarded as the animal counterpart of the superior duo­denal fold in human, was identified, and other folds or fossae were not observed, probably because the duodenum was not fixed to the parietal peritoneum in those animals. Transection of the plica duodenocolica could return the normally rotated intestine back to the state of non-rotation in rat. Conclusions: This study showed the anatomical similarities and dissimilarities of the duodenojejunal flexure among the mammals. Anatomical knowledge of the area is useful for duodenal and pancreatic surgeries, and for animal studies about the duodenum. (Folia Morphol 2018; 77, 2: 286–292

    Developmental expression of retinoic acid receptors (RARs)

    Get PDF
    Here, I review the developmental expression features of genes encoding the retinoic acid receptors (RARs) and the 'retinoid X' or rexinoid receptors (RXRs). The first detailed expression studies were performed in the mouse over two decades ago, following the cloning of the murine Rar genes. These studies revealed complex expression features at all stages of post-implantation development, one receptor gene (Rara) showing widespread expression, the two others (Rarb and Rarg) with highly regionalized and/or cell type-specific expression in both neural and non-neural tissues. Rxr genes also have either widespread (Rxra, Rxrb), or highly-restricted (Rxrg) expression patterns. Studies performed in zebrafish and Xenopus demonstrated expression of Rar and Rxr genes (both maternal and zygotic), at early pre-gastrulation stages. The eventual characterization of specific enzymes involved in the synthesis of retinoic acid (retinol/retinaldehyde dehydrogenases), or the triggering of its catabolism (CYP26 cytochrome P450s), all of them showing differential expression patterns, led to a clearer understanding of the phenomenons regulated by retinoic acid signaling during development. Functional studies involving targeted gene disruptions in the mouse, and additional approaches such as dominant negative receptor expression in other models, have pinpointed the specific, versus partly redundant, roles of the RARs and RXRs in many developing organ systems. These pleiotropic roles are summarized hereafter in relationship to the receptors’ expression patterns

    Diffusion in a Granular Fluid - Theory

    Full text link
    Many important properties of granular fluids can be represented by a system of hard spheres with inelastic collisions. Traditional methods of nonequilibrium statistical mechanics are effective for analysis and description of the inelastic case as well. This is illustrated here for diffusion of an impurity particle in a fluid undergoing homogeneous cooling. An appropriate scaling of the Liouville equation is described such that the homogeneous cooling ensemble and associated time correlation functions map to those of a stationary state. In this form the familiar methods of linear response can be applied, leading to Green - Kubo and Einstein representations of diffusion in terms of the velocity and mean square displacement correlation functions. These correlation functions are evaluated approximately using a cumulant expansion and from kinetic theory, providing the diffusion coefficient as a function of the density and the restitution coefficients. Comparisons with results from molecular dynamics simulation are given in the following companion paper
    • …
    corecore