85 research outputs found

    Evaluation of MAGE-1 and MAGE-3 as tumour-specific markers to detect blood dissemination of hepatocellular carcinoma cells

    Get PDF
    The members of MAGE gene family are highly expressed in human hepatocellular carcinoma (HCC). In the present study, we tested the tumour-specific MAGE-1 and MAGE-3 transcripts in the peripheral blood of HCC patients by nested RT–PCR to detect the circulating tumour cells and evaluate their potential clinical implication. Of 30 HCC patients, the positive rate of MAGE-1 and MAGE-3 transcripts was 43.3% (13 out of 30) and 33.3% (10 out of 30) in PBMC samples, whilst the positive rate was 70% (21 out of 30) and 53.3% (16 out of 30) in the resected HCC tissue samples, respectively. The positivity for at least one MAGE gene transcript was 63.3% (19 out of 30) in PBMC samples of HCC patients and 83.3% (25 out of 30) in the resected HCC tissue samples. MAGE-1 and/or MAGE-3 mRNA were not detected in the PBMC of those patients from whom the resected HCC tissues were MAGE-1 or MAGE-3 mRNA negative, nor in the 25 PBMC samples from healthy donors. The detection of MAGE transcripts in PBMC was correlated with the advanced stages and tumour size of the HCC, being 82.4% (14 out of 17) in tumour stages III and IVa, 56.6% (five out of nine) in stage II, and null (nought out of four) in stage I. The serum α-FP in 33.3% (10 out of 30) of HCC patients was normal or slightly elevated (<40 ng ml−1). However, six of these 10 patients (α-FP <40 ng ml−1) were MAGE-1 and /or MAGE-3 mRNA positive in their PBMC. The follow-up survey of MAGE mRNA in PBMC was performed in 12 patients. Seven patients with persistent MAGE-1 and/or MAGE-3 mRNA positive or from negative turned to positive died because of metastasis and/or recurrence. In striking contrast, all four patients with MAGE-1 and/or MAGE-3 mRNA from positive turned to negative and one patient with persistent MAGE-3 transcript negative are alive after last test. Collectively, detection of MAGE transcripts with follow-up survey in PBMC is a feasible and reliable assay for the early prediction of the relapse and prognosis of the HCC patients

    Correlation Index-Based Responsible-Enzyme Gene Screening (CIRES), a Novel DNA Microarray-Based Method for Enzyme Gene Involved in Glycan Biosynthesis

    Get PDF
    BACKGROUND: Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the correlation between glycan expression and glycan-related gene expression has not been reported previously. METHODOLOGY: To facilitate genetic analysis of glycan biosynthesis, we sought to correlate the expression of genes involved in cell-surface glycan formation with the expression of the glycans, as detected by glycan-recognizing probes. We performed cross-sample comparisons of gene expression profiles using a newly developed, glycan-focused cDNA microarray. Cell-surface glycan expression profiles were obtained using flow cytometry of cells stained with plant lectins. Pearson's correlation coefficients were calculated for these profiles and were used to identify enzyme genes correlated with glycan biosynthesis. CONCLUSIONS: This method, designated correlation index-based responsible-enzyme gene screening (CIRES), successfully identified genes already known to be involved in the biosynthesis of certain glycans. Our evaluation of CIRES indicates that it is useful for identifying genes involved in the biosynthesis of glycan chains that can be probed with lectins using flow cytometry

    SPARC, FOXP3, CD8 and CD45 Correlation with Disease Recurrence and Long-Term Disease-Free Survival in Colorectal Cancer

    Get PDF
    BACKGROUND: SPARC is a matricellular protein involved in tissue remodelling, cell migration and angiogenesis, while forkhead box P3 (FOXP3) protein functions as a transcription factor involved in immune cell regulation. Both SPARC and FOXP3 can play an anti-tumorigenic role in cancer progression. The aim was to determine if SPARC, FOXP3, CD8 and CD45RO expression levels are associated with colorectal cancer (CRC) stage, disease outcome and long-term cancer-specific survival (CSS) in stage II and III CRC. METHODS AND FINDINGS: SPARC expression was initially assessed in 120 paired normal and stage I-IV CRCs. Subsequently, approximately 1000 paired patient samples of stage II or III CRCs in tissue microarrays were stained for SPARC, FOXP3, CD8 or CD45RO. Proportional hazards modelling assessed correlations between these markers and clinicopathological data, including disease outcome and cancer specific survival (CSS). Both SPARC and FOXP3 expression were significantly greater in CRC than normal colon (p<0.0001). High SPARC expression correlated with good disease outcome (≄60 mths without disease recurrence, p = 0.0039) and better long-term CSS in stage II CRC (<0.0001). In stage III CRC, high SPARC expression correlated with better long-term CSS (p<0.0001) and less adjuvant chemotherapy use (p = 0.01). High FOXP3 correlated with a good disease outcome, better long-term CSS and less adjuvant chemotherapy use in stage II (p<0.0037, <0.0001 and p = 0.04 respectively), but not in stage III CRC. High CD8 and CD45RO expression correlated with better disease outcome in stage II CRC, and better CSS, but the differences were not as marked as for SPARC and FOXP3. CONCLUSIONS: These data suggest that high SPARC and FOXP3 are associated with better disease outcome in stage II CRC and may be prognostic indicators of CSS. Further assessment of whether these markers predict patients at high risk of recurrence with stage II CRC and functional studies of these effects are underway

    Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    Get PDF
    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Antigen retrieval with protease digestion applied in immunohistochemical diagnosis of Alport syndrome

    No full text
    Background. Immunofluorescence (IF) staining of type IV collagen α chains on fresh frozen renal tissue is a convenient and accurate diagnosis technique for Alport syndrome (AS), which is restricted in the application with a non-frozen section. An alternative method for a paraffin-embedded section is needed in order to extend the application in various specimens. In this study, immunohistochemical staining of type IV collagen α chains on paraffin-embedded renal sections was investigated
    • 

    corecore