2,094 research outputs found

    Effects of sulfonation process on thermal behavior and microstructure of sulfonated polysulfone membranes as a material for Proton Exchange Membrane (PEM)

    Get PDF
    This paper reports the effect of sulfonation processon thermal behavior and microstrucutre of sulfonated polysulfone membrane. Various degree of sulfonation reactin has been conducted and the sulfonated membranes were characterized by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), x-ray diffraction (XRD) and scanning electron microscopy (SEM). Modifications of the origin polysulfone polymer resulted in an increment value of glass transition temperature (Tg) due to the introduction of sulfonic acid group to the polymer backbone. However, due to some hindrance such as trace amount of organic solvent left during solvent evaporation and high hydrophilicity of the produced sulfonated membranes resulted in decreasing values of Tg. The polymer membrane showed lower degradation temperature as a function of degree of sulfonation. From XRD analysis, it was found that the membrane shows slight crystalline behavior after the sulfonation reaction. Detail discussions and observation of the alteration in microstructure of the sulfonated membrane were supported by SEM micrograph

    Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping

    Get PDF
    Microporous polyvinylidene fluoride (PVDF) hollow fiber membranes with various non-solvent additives, i.e. lithium chloride, glycerol, polyethylene glycol (PEG-400), methanol and phosphoric acid, were fabricated for CO2 stripping via membrane contactors. The membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated by using an in-house made stainless steel module with CO2-preloaded aqueous diethanolamine as the liquid absorbent. Hydrophobicity and gas permeability of the membranes reduced with the addition of a non-solvent additive in the polymer dope but increase in liquid entry pressure was observed as more sponge-like structures developed in the inner layer of the fibers. It was found that PVDF/PEG-400 membrane produced the highest stripping flux of 4.03Ă—10-2 mol m-2 s-1 which can be correlated to its high gas permeation and high effective surface porosity. The result of long-term stripping operation indicated an approximatly 80% stripping flux reduction which can be related to the interaction of polymer membrane and amine solution at high temperature

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    Product Liability - Real Property Improvements - Statute of Repose

    Get PDF
    The Supreme Court of Pennsylvania held that manufacturers of defective products that are incorporated by others into improvements to real property are not protected from liability pursuant to the Pennsylvania Statute of Repose. McConnaughey v. Building Components, Inc., 637 A.2d 1331 (Pa. 1994)

    LTE-Advanced Downlink Throughput Evaluation In The 3G And TV White Space Bands

    Get PDF

    On high energy tails in inelastic gases

    Get PDF
    We study the formation of high energy tails in a one-dimensional kinetic model for granular gases, the so-called Inelastic Maxwell Model. We introduce a time- discretized version of the stochastic process, and show that continuous time implies larger fluctuations of the particles energies. This is due to a statistical relation between the number of inelastic collisions undergone by a particle and its average energy. This feature is responsible for the high energy tails in the model, as shown by computer simulations and by analytical calculations on a linear Lorentz model.Comment: 8 pages, 2 figures, submitted to physica

    Weak Disorder in Fibonacci Sequences

    Full text link
    We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1-epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent, that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling, and copying are considered.Comment: 4 pages, 2 figure

    Percolation with Multiple Giant Clusters

    Full text link
    We study the evolution of percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ("gels") formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F_k, of frozen clusters of size k, has a universal tail, F_k ~ k^{-3}. We propose freezing as a practical mechanism for controlling the gel size.Comment: 4 pages, 3 figure

    How to Choose a Champion

    Full text link
    League competition is investigated using random processes and scaling techniques. In our model, a weak team can upset a strong team with a fixed probability. Teams play an equal number of head-to-head matches and the team with the largest number of wins is declared to be the champion. The total number of games needed for the best team to win the championship with high certainty, T, grows as the cube of the number of teams, N, i.e., T ~ N^3. This number can be substantially reduced using preliminary rounds where teams play a small number of games and subsequently, only the top teams advance to the next round. When there are k rounds, the total number of games needed for the best team to emerge as champion, T_k, scales as follows, T_k ~N^(\gamma_k) with gamma_k=1/[1-(2/3)^(k+1)]. For example, gamma_k=9/5,27/19,81/65 for k=1,2,3. These results suggest an algorithm for how to infer the best team using a schedule that is linear in N. We conclude that league format is an ineffective method of determining the best team, and that sequential elimination from the bottom up is fair and efficient.Comment: 6 pages, 3 figure
    • …
    corecore